Skip to main content
Log in

A Computational Study of Soot Formation in Methane Air Co-Flow Diffusion Flame Under Microgravity Conditions

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

An in-house developed code has been used to predict soot formation in a methane air co flow diffusion flame at normal gravity and at lower gravity levels of 0.5 G, and 0.0001 G (microgravity). There is an augmentation of soot formation at lower gravity levels because of lower buoyancy induced acceleration leading to an increased residence time. The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. The axial velocity under normal gravity and reduced gravity show negative values (relatively small in magnitude) near the wall at axial height beyond 15 cm; but axial velocity is never negative in microgravity condition. Peak value of soot volume fraction at 0.5 G and microgravity multiplies by a factor of ∼3 and ∼7, respectively of that at normal gravity. The zone of peak soot volume fraction shifts away from the axis towards the wings, as gravity level is lowered. In comparison to soot volume fraction, the factors of amplification of soot number density at reduced gravity and at microgravity are comparatively lower at 1.2 and 1.5 of that at normal gravity respectively. On the other hand, mean soot particle sizes at reduced gravity and microgravity increase to 1.5 and 2 times of that at normal gravity respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alam, F.E., Dryer, F.L., Farouk, T.I.: Effectiveness of xenon as a fire suppressant under microgravity combustion environment. Combust. Sci. Technol. (2015). doi:10.1080/00102202.2015.1085033

    Google Scholar 

  • Barlow, R.S., Karpetis, A.N., Frank, J.H., Chen, J.Y.: Scalar profiles and NO-formation in laminar opposed flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)

    Article  Google Scholar 

  • Datta, A., Saha, A.: Contributions of self-absorption and soot on radiation heat transfer in a laminar methane-air diffusion flame. Proc. IMechE 221, 955–970 (2006)

    Article  Google Scholar 

  • DuPont, V., Pourkashanian, M., Williams, A.: Modeling of process heaters fired by natural gas. J. Inst. Energy 73, 20– 29 (1993)

    Google Scholar 

  • Ezekoye, O.A., Zhang, Z.: Soot oxidation and agglomeration modeling in a microgravity diffusion flame. Combust. Flame 110, 127–139 (1997)

    Article  Google Scholar 

  • Fujita, O., Ito, K.C.: Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame. Exp. Therm. Flu. Sci. 26, 305–311 (2002)

    Article  Google Scholar 

  • Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1989)

    Google Scholar 

  • Hirt, C.W., Cook, J.L.: Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10, 324–338 (1972)

    Article  MATH  Google Scholar 

  • Jeon, B.H., Choi, J.H.: Effect of buoyancy on soot formation in gas-jet diffusion flame. J. Mech. Sci. Technol. 24(7), 1537–1543 (2010)

    Article  Google Scholar 

  • Kaplan, C.R., Oran, E.S., Kailasanath, K.: Gravitational effects on sooting diffusion flames. Twenty-sixth Symp. (Int.) Combust., Combust. Inst., 1301–1309 (1996)

  • Kennedy, I.M.: Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23, 95–132 (1997)

    Article  Google Scholar 

  • Kent, J.H., Honnery, D.R.: A soot formation rate map for a laminar ethylene diffusion flame. Combust. Flame 79, 287–299 (1990)

    Article  Google Scholar 

  • Kong, W., Liu, F.: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combust. Theor. Model. 13(6), 993–1023 (2009)

    Article  MATH  Google Scholar 

  • Kong, W., Liu, F.: Effects of gravity on soot formation in a coflow laminar Methane/Air diffusion flame. Microgravity Sci. Technol. 22, 205–214 (2010)

    Article  Google Scholar 

  • Lee, K.B., Thring, M.W., Beer, J.M.: On the rate of combustion of soot in a laminar soot flame. Combust. Flame 6, 137–145 (1962)

    Article  Google Scholar 

  • Legros, G., Joulain, P., Vantelon, J., Fuentes, A., Bertheau, D., Torero, J.L.: Soot volume fraction measurements in a three-dimensional laminar diffusion flame established in microgravity. Combust. Sci. Technol. 178, 813–835 (2006)

    Article  Google Scholar 

  • Ma, B., Cao, S., Giassi, D., Stocker, D.P., Takahashi, F., Bennett, B.A.V., Smooke, M.D., Long, M.B.: An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity. Proc. Combust. Inst. 35, 839–846 (2015)

    Article  Google Scholar 

  • Mandal, B.K., Sarkar, A., Datta, A.: Transient development of flame and soot distribution in laminar diffusion flame with preheated air. ASME J. Engg. Gas Turb. Power 131, 031501–1–031501-9 (2008)

    Google Scholar 

  • Mitchell, R.E., Sarofim, A.F., Clomburg, A.: Experimental and numerical investigation of confined laminar diffusion flames. Combust. Flame 37, 227–244 (1980)

    Article  Google Scholar 

  • Moss, J.B., Stewart, C.D., Young, K.J.: Modelling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust. Flame 101, 491–500 (1995)

    Article  Google Scholar 

  • Park, S.H., Choi, M.Y.: Influences of residence time of fuel vapor transport on sooting behavior of ethanol droplet flames in microgravity. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9420-6

    Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemispherical Publishing Corporation (1980)

  • Reimann, J., Will, S.: Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Sci. Technol. 16, 333–337 (2005)

    Article  Google Scholar 

  • Reimann, J., Kuhlmann, A.S., Will, S.: Investigations on soot formation in hepten jet diffusion flames by optical techniques. Microgravity Sci. Technol. 22, 499–505 (2010)

    Article  Google Scholar 

  • Santoro, R.J., Yeh, T.T., Horvath, J.J., Semerjian, H.G.: The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 53, 89–115 (1987)

    Article  Google Scholar 

  • Smooke, M.D., Mitchell, R.E., Keys, D.E.: Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combust. Sci. Technol. 67, 85–122 (1989)

    Article  Google Scholar 

  • Smooke, M.D., Mcenally, C.S., Pfefferle, L.D., Hall, R.J., Colket, M.: Computational and experimental study of soot formation in a coflow laminar diffusion flame. Combust. Flame 117, 117–139 (1999)

    Article  Google Scholar 

  • Syed, K.J., Stewart, C.D., Moss, J.D.: Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames. In: Proceedings of the Twenty-Third Symp. (Int.) Combust., Combust. Inst., Pittsburgh, pp 1533–1539 (1990)

  • Walsh, K.T., Fielding, J., Smooke, M.D., Long, M.B.: Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 28, 1973–1979 (2000)

    Article  Google Scholar 

  • Yeoh, G.H., Yuen, R.K.K., Chueng, S.C.P., Kwok, W.K.: On modeling combustion, radiation and soot processes in compartment. Build. Environ. 38, 771–778 (2003)

    Article  Google Scholar 

  • Zhang, Y., Liu, D., Li, S., Li, Y., Lou, C.: The influence of gravity levels on Soot formation for the combustion of ethylene–air mixture. Russian J. Phys. Chem. A 88(13), 2300–2307 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Jyoti Bhowal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowal, A.J., Mandal, B.K. A Computational Study of Soot Formation in Methane Air Co-Flow Diffusion Flame Under Microgravity Conditions. Microgravity Sci. Technol. 28, 395–412 (2016). https://doi.org/10.1007/s12217-016-9489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9489-6

Keywords

Navigation