Skip to main content
Log in

Numerical Simulation of Transient Development of Flame, Temperature and Velocity under Reduced Gravity in a Methane Air Diffusion Flame

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

A methane air co flow diffusion flame has been numerically simulated with the help of an in-house developed code at normal gravity, 0.5 G, and 0.0001 G (microgravity) for the study of transient behavior of the flame in terms of flame shape, temperature profile and velocity (streamlines). The study indicates that lower is the gravity level, the higher is the time of early transience. The flame developments during transience are marked by the formation of a secondary flamelet at different heights above the primary flame at all gravity levels. The development of temperature profile at microgravity takes a much longer time to stabilize than the flame development. At normal gravity and 0.5 G gravity level, streamlines, during transience, show intermediate vortices which are finally replaced by recirculation of ambient air from the exit plane. At microgravity, neither any vortex nor any recirculation at any stage is observed. Centerline temperature plots, at all gravity levels during transience, demonstrate a secondary peak at some instants as a consequence of the secondary flamelet formation. The centerline velocity at microgravity decreases gradually during transience, unlike at other two gravity levels where the fall is very sharp and is indicative of negligible buoyancy at microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Kong, W., Liu, F.: Effects of Gravity on Soot Formation in a Co-flow Laminar /Air Diffusion Flame. Microgravity. Sci. Technol. 22, 205–214 (2010)

    Article  Google Scholar 

  • Reimann, J., Will, S.: Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity. Sci. Technol. 16, 333–337 (2005)

    Article  Google Scholar 

  • Takahashi, F., Linteris, G.T., Katta, V.R.: Extinguishment of methane diffusion flames by carbon dioxide in co-flow air and oxygen-enriched microgravity environments. Combust. Flame 155, 37–53 (2008)

    Article  Google Scholar 

  • Bennett, B.A.V., Cheng, Z., Pitz, R.W., Smooke, M.D.: Computational and experimental study of oxygen-enhanced axisymmetric laminar methane flames. Combust. Theor. Model. 12(3), 497–527 (2008)

    Article  MATH  Google Scholar 

  • Krishnan, S.S., Abshire, J.M., Sunderland, P.B., Yuan, Z.G., Gore, J.P.: Analytical predictions of shapes of laminar diffusion flames in microgravity and earth gravity. Combust. Theor. Model. 12(4), 605–620 (2008)

    Article  MATH  Google Scholar 

  • Park, S.H., Choi, M.Y.: Influences of Residence time of Fuel Vapor Transport on Sooting Behavior on Ethanol Droplet Flames in microgravity. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9420-6

  • Oh, C.B., Hamins, A., Bundy, M., Park, J.: The two-dimensional structure of low strain rate counterflow nonpremixed-methane flames in normal and microgravity. Combust. Theor. Model. 12(2), 283–302 (2008)

    Article  MATH  Google Scholar 

  • Tang, S., Chernovsky, M.K., Im, H.G., Atreya, A.: A computational study of spherical diffusion flames in microgravity with gas radiation Part I: Model development and validation. Combust. Flame 157, 118–126 (2010)

    Article  Google Scholar 

  • Higuera, F.J., Muntean, V.: Effect of radiation losses on very lean methane/air flames propagating upward in a vertical tube. Combust. Flame 161, 2340–2347 (2014)

    Article  Google Scholar 

  • Bykov, V., Neagos, A., Maas, U.: On transient behavior of non-premixed counter-flow diffusion flames within the REDIM based model reduction concept. Proc. Combust. Inst. 34, 197–203 (2013)

    Article  Google Scholar 

  • Ma, B., Cao, S., Giassi, D., Stocker, D.P., Takahashi, F., Bennett, B.A.V., Smooke, M.D., Long, M.B.: An experimental and computational study of soot formation in a co-flow jet flame under microgravity and normal gravity. Proc. Combust. Inst. 35, 839–846 (2015)

    Article  Google Scholar 

  • Reimann, J., Kuhlmann, A.Z., Will, S.: Investigations on soot formation in hepten jet diffusion flames by optical techniques. Microgravity Sci. Technol. 22, 499–505 (2010)

    Article  Google Scholar 

  • Alam, F.E., Dryer, F.L., Farouk, T.I.: Effectiveness of Xenon as a Fire Suppressant Under Microgravity Combustion Environment. Combust. Sci. Technol. (2015). doi:10.1080/00102202.2015.1085033

  • Zhang, Y., Liu, D., Li, S., Li, Y., Lou, C.: The influence of gravity levels on soot formation for the combustion of Ethylene-Air mixture. Russ. J. Phys. Chem. A 88(13), 2300–2307 (2014)

    Article  Google Scholar 

  • Mitchell, R.E., Sarofim, A.F., Clomburg, A.: Experimental and numerical investigation of confined laminar diffusion flames. Combust. Flame 37, 227–244 (1980)

    Article  Google Scholar 

  • Smooke, M.D., Mitchell, R.E., Keys, D.E.: Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combust. Sci. Technol. 67, 85–122 (1989)

    Article  Google Scholar 

  • Datta, A., Saha, A.: Contributions of self-absorption and soot on radiation heat transfer in a laminar methane-air diffusion flame. Proc. IMechE 221, 955–970 (2006)

    Article  Google Scholar 

  • DuPont, V., Pourkashanian, M., Williams, A.: Modeling of process heaters fired by natural gas. J. Inst. Energy 73, 20–29 (1993)

    Google Scholar 

  • Mandal, B.K., Sarkar, A., Datta, A.: Transient development of flame and soot distribution in laminar diffusion flame with preheated air. ASME J. Eng. Gas Turb. Power 131, 031501–1–031501-9 (2008)

    Google Scholar 

  • Syed, K.J., Stewart, C.D., Moss, J.D.: Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames, pp 1533–1539. Combust Inst, Pittsburgh (1990)

    Google Scholar 

  • Moss, J.B., Stewart, C.D., Young, K.J.: Modelling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust. Flame 101, 491–500 (1995)

    Article  Google Scholar 

  • Lee, K.B., Thring, M.W., Beer, J.M.: On the rate of combustion of soot in a laminar soot flame. Combust. Flame 6, 137–145 (1962)

    Article  Google Scholar 

  • Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1989)

    Google Scholar 

  • Santoro, R.J., Yeh, T.T., Horvath, J.J., Semerjian, H.G.: The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 53, 89–115 (1987)

    Article  Google Scholar 

  • Smooke, M.D., Mcenally, C.S., Pfefferle, L.D., Hall, R.J., Colket, M.B.: Computational and experimental study of soot formation in a coflow laminar diffusion flame. Combust. Flame 117, 117–139 (1999)

    Article  Google Scholar 

  • Yeoh, G.H., Yuen, R.K.K., Chueng, S.C.P., Kwok, W.K.: On modeling combustion, radiation and soot processes in compartment. Build. Environ. 38, 771–778 (2003)

    Article  Google Scholar 

  • Kennedy, I.M.: Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23, 95–132 (1997)

    Article  Google Scholar 

  • Barlow, R.S., Karpetis, A.N., Frank, J.H., Chen, J.Y.: Scalar profiles and NO-formation in laminar opposed flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)

    Article  Google Scholar 

  • Kent, J.H., Honnery, D.R.: A soot formation rate map for a laminar ethylene diffusion flame. Combust. Flame 79, 287–299 (1990)

    Article  Google Scholar 

  • Hirt, C.W., Cook, J.L.: Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10, 324–338 (1972)

    Article  MATH  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemispherical Publishing Corp, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Jyoti Bhowal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowal, A.J., Mandal, B.K. Numerical Simulation of Transient Development of Flame, Temperature and Velocity under Reduced Gravity in a Methane Air Diffusion Flame. Microgravity Sci. Technol. 29, 151–175 (2017). https://doi.org/10.1007/s12217-016-9535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9535-4

Keywords

Navigation