Skip to main content
Log in

The influence of gravity levels on soot formation for the combustion of ethylene-air mixture

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The reduced mechanism coupled with 2D flame code using CHEMKIN II to investigate the effect of gravity on flame structure and soot formation in diffusion flames. The results show that the gravity has a rather significant effect on flame structure and soot formation. The visible flame height and peak soot volume fraction in general increases with the gravity from 1g decreased to 0g. The peak flame temperature decreases with decreasing gravity level. Comparing the calculated results from 1g to 0g, the flame shape becomes wider, the high temperature zone becomes shorter, the mixture velocity has a sharp decrease, the soot volume fraction has a sharp increase and CO and unprovided species distribution becomes wider along radial direction. At normal and half gravity, the flame is buoyancy controlled and the axial velocity is largely independent of the coflow air velocity. At microgravity (0g), the flame is momentum controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Azatyan, Russ. J. Phys. Chem. A 87, 1295 (2013).

    Article  CAS  Google Scholar 

  2. Y. D. Zhang, C. Lou, M. L. Xie, et al., J. Cent. South Univ. Technol. 18, 1263 (2011).

    Article  CAS  Google Scholar 

  3. F. Liu, H. Guo, G. J. Smallwood, et al., Combust. Theory Model. 7, 301 (2003).

    Article  CAS  Google Scholar 

  4. F. Liu, H. Guo, G. J. Smallwood, et al., Combust. Flame 145, 324 (2006).

    Article  Google Scholar 

  5. Y. N. Shebeko, I. A. Bolod’yan, A. Y. Shebeko, et al., Russ. J. Phys. Chem. A 83, 618 (2009).

    Article  CAS  Google Scholar 

  6. V. V. Azatyan and G. P. Saikova, Russ. J. Phys. Chem. A 87, 1615 (2013).

    Article  CAS  Google Scholar 

  7. T. D. Khokhlova, N. K. Shonija, and O. B. Popovicheva, Russ. J. Phys. Chem. A 86, 120 (2012).

    Article  CAS  Google Scholar 

  8. W. Wang, Master Thesis of Institute of Engineering Thermophysics (Chinese Academy of Sciences, 2003).

    Google Scholar 

  9. R. Friedman, K. R. Sacksteder, and D. Urban, Designs and Research for Fire Safety in Spacecraft, NASA TM, 105317 (NASA, 1991).

    Google Scholar 

  10. R. Friedman, Fire Safety in Extraterrestrial Environments, NASA/TM, 207417 (1998).

    Google Scholar 

  11. S. L. Olson and J. S. T’ien, Combust. Flame 121, 439 (2000).

    Article  CAS  Google Scholar 

  12. J. L. Torero, T. Vietoris, G. Legros, et al., Combust. Sci. Tech. 174, 187 (2002).

    Article  CAS  Google Scholar 

  13. M. Y. Bahadori, R. B. Edelman, D. P. Stocker, et al., AIAA J. 28, 236 (1990).

    Article  CAS  Google Scholar 

  14. B. Konsur, C. M. Megaridis, and D. W. Griffin, Combust. Flame 116, 334 (1999).

    Article  CAS  Google Scholar 

  15. D. L. Urban, Z. G. Yuan, P. B. Sunderland, et al., Proc. Combust. Inst. 28, 1965 (2000).

    Article  CAS  Google Scholar 

  16. C. R. Kaplan, E. S. Oran, and K. Kailasanath, Proc. Combust. Inst. 26, 1301 (1996).

    Article  Google Scholar 

  17. W. Kong and F. Liu, Combust. Theory Model. 13, 993 (2009).

    Article  CAS  Google Scholar 

  18. K. C. Lin, G. M. Faeth, P. B. Sunderland, et al., Combust. Flame 116, 415 (1999).

    Article  CAS  Google Scholar 

  19. C. M. Megaridis, D. W. Griffin, and B. Konsur, Proc. Combust. Inst. 26, 1291 (1996).

    Article  Google Scholar 

  20. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech, version 3.0 (2002). http://www.me.berkeley.edu/gri-mech/

    Google Scholar 

  21. Y. Zhang, H. Zhou, M. Xie, et al., Chin. J. Chem. Eng. 18, 967 (2010).

    Article  CAS  Google Scholar 

  22. C. K. Law and S. H. Chung, Combust. Sci. Techn. 29, 129 (2007).

    Article  Google Scholar 

  23. J. B. Moss, C. D. Stewart, and K. J. Young, Combust. Flame 101, 491 (1995).

    Article  CAS  Google Scholar 

  24. K. M. Leung, R. P. Lindstedt, and W. P. Jones, Combust. Flame 87, 289 (1991).

    Article  CAS  Google Scholar 

  25. A. Massias, D. Diamantis, E. Mastorakos et al., Combust. Flame 117, 685 (1999).

    Article  CAS  Google Scholar 

  26. R. W. Bilger, S. H. Starner, and R. J. Kee, Combust. Flame 80, 135 (1990).

    Article  CAS  Google Scholar 

  27. F. G. Roper, C. Smith, and A. C. Cunningham, Combust. Flame 29, 227 (1977).

    Article  CAS  Google Scholar 

  28. F. G. Roper, Combust. Flame 29, 219 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, D., Li, S. et al. The influence of gravity levels on soot formation for the combustion of ethylene-air mixture. Russ. J. Phys. Chem. 88, 2300–2307 (2014). https://doi.org/10.1134/S0036024414130317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414130317

Keywords

Navigation