Skip to main content
Log in

Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Two-dimensional optical measurements were performed for the investigation of soot formation of n-heptane laminar gas-jet diffusion flames under buoyant and non-buoyant conditions utilizing the Bremen Drop Tower. Techniques employed were laser-induced incandescence for the determination of soot concentration and primary particle sizes and two-color emission pyrometry with a three-point Abel inversion for the measurement of temperature fields. In line with former experiments for other hydrocarbon fuels the investigations revealed drastic differences in the sooting behavior between flames under normal and microgravity. With the lack of buoyancy maximum soot temperatures were reduced by roughly 300 K and maximum primary particle sizes were more than doubled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berta, P., Aggarwal, S., Puri, I., Granata, S., Faravelli, T., Ranzi, E.: Experimental and numerical investigation of n-heptane/air counterflow nonpremixed flame structure. J. Propuls. Power 24, 797–804 (2008)

    Article  Google Scholar 

  • Bladh, H., Johnsson, J., Bengtsson, P.E.: On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl. Phys. B 90, 109–125 (2008)

    Article  Google Scholar 

  • Chen, G., Gomez, A.: Co-flow laminar diffusion flames of monodisperse sprays: structure, evaporation and microgravity effects. Combust. Sci. Technol. 115, 177–201 (1996)

    Article  Google Scholar 

  • Cignoli, F., De Iuliis, S., Manta, V., Zizak, G.: Two-dimensional two-wavelength emission technique for soot diagnostics. Appl. Opt. 40, 5370–5378 (2001)

    Article  Google Scholar 

  • Dasch, C.J.: One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31, 1146–1152 (1992)

    Article  Google Scholar 

  • di Stasio, S., Massoli, P.: Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry. Meas. Sci. Technol. 5, 1453–1465 (1994)

    Article  Google Scholar 

  • Diez, F.J., Aalburg, C., Sunderland, P.B., Urban, D.L., Yuan, Z.G., Faeth, G.M.: Soot properties of laminar jet diffusion flames in microgravity. Combust. Flame 156, 1514–1524 (2009)

    Article  Google Scholar 

  • Geigle, K.P., Schneider-Kühnle, Y., Tsurikov, M.S., Hadef, R., Lückerath, R., Krüger, V., Stricker, W., Aigner, M.: Investigation of laminar pressurized flames for soot model validation using SV-CARS and LII. Proc. Combust. Inst. 30, 1645–1653 (2005)

    Article  Google Scholar 

  • Hall, R.J., Bonczyk, P.A.: Sooting flame thermometry using emission/absorption tomography. Appl. Opt. 29, 4590–4598 (1990)

    Article  Google Scholar 

  • Kong, W., Liu, F.: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combust. Theory Model. 13, 993–1023 (2009)

    Article  MATH  Google Scholar 

  • Konsur, B., Megaridis, C.M., Griffin, D.W.: Soot aerosol properties in laminar soot-emitting microgravity nonpremixed flames. Combust. Flame 118, 509–520 (1999)

    Article  Google Scholar 

  • Ku, J.C., Griffin, D.W., Greenberg, P.S., Roma, J.: Buoyancy-induced differences in soot morphology. Combust. Flame 102, 216–218 (1995)

    Article  Google Scholar 

  • Kuhlmann, S.A., Reimann, J., Will, S.: On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37, 1696–1716 (2006)

    Article  Google Scholar 

  • Manzello, S.L., Choi, M.Y.: Morphology of soot collected in microgravity droplet flames. Int. J. Heat Mass Transfer 45, 1109–1116 (2002)

    Article  Google Scholar 

  • Manzello, S.L., Yozgatligil, A., Choi, M.Y.: An experimental investigation of sootshell formation in microgravity droplet combustion. Int. J. Heat Mass Transfer 47, 5381–5385 (2004)

    Article  Google Scholar 

  • Michelsen, H.A.: Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7044 (2003)

    Article  Google Scholar 

  • Reimann, J., Will, S.: Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Sci. Technol. 16, 333–337 (2005)

    Article  Google Scholar 

  • Reimann, J., Kuhlmann, S.A., Will, S.: Improvement in soot concentration measurements by laser-induced incandescence (LII) through a particle size correction. Combust. Flame 153, 650–654 (2008)

    Article  Google Scholar 

  • Santoro, R.J., Shaddix, C.R.: Laser-induced incandescence. In: Kohse-Höinghaus, K., Jeffries, J.B. (eds.) Applied Combustion Diagnostics, pp. 252–286. Taylor & Francis, New York (2002)

    Google Scholar 

  • Schulz, C., Kock, B., Hofmann, M., Michelsen, H., Will, S., Bougie, B., Suntz, R., Smallwood, G.: Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)

    Article  Google Scholar 

  • Snelling, D.R., Thomson, K.A., Smallwood, G.J., Gülder, Ö.L., Weckman, E.J., Fraser, R.A.: Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40, 1789–1795 (2002)

    Article  Google Scholar 

  • Urban, D.L., Yuan, Z.G., Sunderland, P.B., Linteris, G.T., Lin, K.C., Dai, Z., Sun, K., Faeth, G.M.: Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames. AIAA J. 36, 1346–1360 (1998)

    Article  Google Scholar 

  • Vaglieco, B.M., Beretta, F., D’Alessio, A.: In situ evaluation of the soot refractive index in the UV-Visible from the measurement of the scattering and extinction coefficients in rich flames. Combust. Flame 79, 259–271 (1990)

    Article  Google Scholar 

  • Vander Wal, R.L.: Laser-induced incandescence measurements in low-gravity. Microgravity Sci. Technol. 10, 66–74 (1997)

    Google Scholar 

  • Walsh, K.T., Fielding, J., Smooke, M.D., Long, M.B.: Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 28, 1973–1979 (2000)

    Article  Google Scholar 

  • Weikl, M.C., Seeger, T., Wendler, M., Sommer, R., Beyrau, F., Leipertz, A.: Validation experiments for spatially resolved one-dimensional emission spectroscopy temperature measurements by dual-pump CARS in a sooting flame. Proc. Combust. Inst. 32, 745–752 (2009)

    Article  Google Scholar 

  • Will, S., Schraml, S., Leipertz, A.: Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Opt. Lett. 20, 2342–2344 (1995)

    Article  Google Scholar 

  • Will, S., Schraml, S., Leipertz, A.: Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII). Proc. Combust. Inst. 26, 2277–2284 (1996)

    Google Scholar 

  • Will, S., Schraml, S., Bader, K., Leipertz, A.: Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37, 5647–5658 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Will.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimann, J., Kuhlmann, SA. & Will, S. Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques. Microgravity Sci. Technol. 22, 499–505 (2010). https://doi.org/10.1007/s12217-010-9204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9204-y

Keywords

Navigation