Skip to main content
Log in

Study of three-point impulsive boundary value problems governed by \(\Psi \)-Caputo fractional derivative

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this study, we investigate the existence and uniqueness of solutions for specific type of three-point boundary value problems. These problems focus on nonlinear impulsive fractional differential equations, which pose a challenge in finding their solutions. To address this, we employ fixed point theorems of Banach and Schauder as mathematical tools to establish the existence, and uniqueness of solutions. The comparison between analytical outcomes and illustrative examples provides valuable insights into the accuracy and reliability of the derived solutions, enhancing their applicability in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  4. Oliveira, D.S., Capelas de Oliveira, E.: Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 37(3), 3672–3690 (2018). https://doi.org/10.1007/s40314-017-0536-8

  5. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002). https://doi.org/10.1006/jmaa.2000.7194

    Article  MathSciNet  Google Scholar 

  6. Clemente-López, D., Munoz-Pacheco, J.M., Rangel-Magdaleno, J.D.J.: A review of the digital implementation of continuous-time fractional-order chaotic systems using FPGAs and embedded hardware. Arch. Comput. Methods Eng. 30(2), 951–983 (2023). https://doi.org/10.1007/s11831-022-09824-6

    Article  Google Scholar 

  7. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Problems 2023, 1 (2023). https://doi.org/10.1186/s13661-022-01688-w

    Article  MathSciNet  Google Scholar 

  8. Kumar, D., Yildirim, A., Kaabar, M.K.A., Rezazadeh, H., Samei, M.E.: Exploration of some novel solutions to a coupled Schrödinger-KdV equations in the interactions of capillary-gravity waves. Math. Sci. 16(4), 13 (2022). https://doi.org/10.1007/s40096-022-00501-0

    Article  MathSciNet  Google Scholar 

  9. Balci, E., Ozturk, I., Kartal, S.: Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons & Fract. 123, 43–51 (2023). https://doi.org/10.1016/j.chaos.2019.03.032

    Article  MathSciNet  Google Scholar 

  10. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984). https://doi.org/10.1115/1.3167615

    Article  Google Scholar 

  11. Hammad, H.A., Rashwan, R.A., Nafea, A., Samei, M.E., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions. J. Vib. Control 30(3–4), 632–647 (2024). https://doi.org/10.1177/10775463221149232

    Article  MathSciNet  Google Scholar 

  12. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967). https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

    Article  Google Scholar 

  13. Mao, J., Zhao, Z., Wang, C.: The unique iterative positive solution of fractional boundary value problem with \(q\)-difference. Appl. Math. Lett. 100, 106002 (2020). https://doi.org/10.1016/j.aml.2019.106002

    Article  MathSciNet  Google Scholar 

  14. Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62(3), 1181–1199 (2011). https://doi.org/10.1016/j.camwa.2011.03.086

    Article  MathSciNet  Google Scholar 

  15. Azzaoui, B., Tellab, B., Zennir, K.: Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces. Math. Methods Appl. Sci. 46(3), 3115–3131 (2023). https://doi.org/10.1002/mma.7623

    Article  MathSciNet  Google Scholar 

  16. Jajarmi, A., Baleanu, D.: A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 8, 220 (2020). https://doi.org/10.3389/fphy.2020.00220

    Article  Google Scholar 

  17. Seal, A., Natesan, S.: Convergence analysis of a second-order scheme for fractional differential equation with integral boundary conditions. J. Appl. Math. Comput. 69, 465–489 (2023). https://doi.org/10.1007/s12190-022-01751-w

    Article  MathSciNet  Google Scholar 

  18. Bedi, P., Kumar, A. A.and Khan, Abdeljawad, T.: Stability analysis of neutral delay fractional differential equations with Erdelyi–Kober fractional integral boundary conditions. Results Control Optim. 12, 100278 (2023). https://doi.org/10.1016/j.rico.2023.100278

  19. Poovarasan, R., Kumar, P., Sivalingam, S., Govindaraj, V.: Some novel analyses of the caputo-type singular three-point fractional boundary value problems. J. Anal. 32(2), 637–658 (2024). https://doi.org/10.1007/s41478-023-00638-8

    Article  MathSciNet  Google Scholar 

  20. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. 13(3), 709–722 (2020). https://doi.org/10.3934/dcdss.2020039

  21. Subramanian, M., Alzabut, J., Dumitru, D., Samei, M.E., Zada, A.: Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021(4), 267 (2021). https://doi.org/10.1186/s13662-021-03414-9

    Article  MathSciNet  Google Scholar 

  22. Khalid, K.H., Zada, A., Popa, I.L., Samei, M.E.: Existence and stability of a \(q\)-Caputo fractional jerk differential equation having anti-periodic boundary conditions. Bound. Value Problems 2024, 28 (2024). https://doi.org/10.1186/s13661-024-01834-6

    Article  MathSciNet  Google Scholar 

  23. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the \(p\)-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

    Article  MathSciNet  Google Scholar 

  24. Thabet, S.T.M., Matar, M.M., Salman, M.A., Samei, M.E., Vivas-Cortez, M.: On coupled snap system with integral boundary conditions in the \(\mathbb{G} \)-Caputo sense. AIMS Math. 8(6), 12576–12605 (2023). https://doi.org/10.3934/math.2023632

    Article  MathSciNet  Google Scholar 

  25. Poovarasan, R., Kumar, P., Nisar, K.S., Govindaraj, V.: The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems. AIMS Math. 8(7), 16757–16772 (2023). https://doi.org/10.3934/math.2023857

    Article  MathSciNet  Google Scholar 

  26. Mali, A.D., Kucche, K.D.: Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations. Math. Methods Appl. Sci. 43(15), 8608–8631 (2020). https://doi.org/10.1002/mma.6521

    Article  MathSciNet  Google Scholar 

  27. Wang, G., Pei, K., Agarwal, R.P., Zhang, L., Ahmad, B.: Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 343, 230–239 (2018). https://doi.org/10.1016/j.cam.2018.04.062

  28. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017). https://doi.org/10.1016/j.cnsns.2016.09.006

    Article  MathSciNet  Google Scholar 

  29. Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41(1), 336–352 (2018). https://doi.org/10.1002/mma.4617

    Article  MathSciNet  Google Scholar 

  30. Abdo, M.S., Panchal, S.K., Saeed, A.M.: Fractional boundary value problem with \(\psi \)-Caputo fractional derivative. Proc.-Math. Sci. 129(5), 65 (2019). https://doi.org/10.1007/s12044-019-0514-8

    Article  MathSciNet  Google Scholar 

  31. Wanassi, O.K., Torres, D.F.M.: An integral boundary fractional model to the world population growth. Chaos Solitons Fract. 168, 113151 (2023)

    Article  MathSciNet  Google Scholar 

  32. Poovarasan, R., Govindaraj, V., Murillo-Arcila, M.: The existence, uniqueness, and stability results for a nonlinear coupled system using \(\psi \)-Caputo fractional derivatives. Bound. Value Problems 2023(1), 75 (2023). https://doi.org/10.1186/s13661-023-01769-4

    Article  MathSciNet  Google Scholar 

  33. Poovarasan, R., Gómez-Aguilar, J.F., Govindaraj, V.: Investigating the existence, uniqueness, and stability of solutions in boundary value problem of fractional differential equations. Phys. Scr. 99(5), 055264 (2024). https://doi.org/10.1088/1402-4896/ad3d97

    Article  Google Scholar 

  34. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995). https://doi.org/10.1142/2892

  35. Santra, S.S., Mondal, P., Samei, M.E., Alotaibi, H., Altanjii, M., Botmart, T.: Study on the oscillation of solution to second-order impulsive systems. AIMS Math. 8(9), 22237–22255 (2024). https://doi.org/10.3934/math.20231134

    Article  MathSciNet  Google Scholar 

  36. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989). https://doi.org/10.1142/0906

  37. Lee, E.K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equations. Appl. Math. Comput. 158(3), 745–759 (2004). https://doi.org/10.1016/j.amc.2003.10.013

    Article  MathSciNet  Google Scholar 

  38. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Problems 2023(1), 1–17 (2023)

    Article  MathSciNet  Google Scholar 

  39. Geng, F.Z., Wu, X.Y.: A novel kernel functions algorithm for solving impulsive boundary value problems. Appl. Math. Lett. 134, 108318 (2022). https://doi.org/10.1016/j.aml.2022.108318

    Article  MathSciNet  Google Scholar 

  40. Torres Ledesma, C.E., Nyamoradi, N.: Impulsive fractional boundary value problem with \(p\)-Laplace operator. J. Appl. Math. Comput. 55, 257–278 (2017). https://doi.org/10.1007/s12190-016-1035-6

    Article  MathSciNet  Google Scholar 

  41. Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc. 51(2), 509–527 (2008). https://doi.org/10.1017/S0013091506001532

    Article  MathSciNet  Google Scholar 

  42. Wei, Y., Bai, Z.: Multiple solutions for some nonlinear impulsive differential equations with three-point boundary conditions via variational approach. J. Appl. Anal. Comput. 11(6), 3031–3043 (2021)

    MathSciNet  Google Scholar 

  43. Liu, Y.: A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications. Adv. Nonlinear Anal. 8(1), 386–454 (2017). https://doi.org/10.1515/anona-2016-0064

    Article  MathSciNet  Google Scholar 

  44. Graef, J.R., Heidarkhani, S., Kong, L., Moradi, S.: Three solutions for impulsive fractional boundary value problems with \(p\)-Laplacian. Bull. Iran. Math. Soc. 48(4), 1413–1433 (2022). https://doi.org/10.1007/s41980-021-00589-5

    Article  MathSciNet  Google Scholar 

  45. Shah, K., Abdeljawad, T., Ali, A., Alqudah, M.A.: Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative. Fractals 30(08), 2240204 (2022). https://doi.org/10.1142/S0218348X22402046

    Article  Google Scholar 

  46. Shah, K., Ahmad, I., Nieto, J.J., Ur Rahman, G., Abdeljawad, T.: Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations. Qual. Theory Dyn. Syst. 21(4), 131 (2022).https://doi.org/10.48185/jfcns.v4i1.714

  47. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J., Alzahrani, F.: Nonlocal boundary value problems for impulsive fractional qk \(q_k\)-difference equations. Adv. Differ. Equ. 2016, 1–16 (2016). https://doi.org/10.1186/s13662-016-0848-9

  48. Yao, W.: Existence and multiplicity of solutions for three-point boundary value problems with instantaneous and noninstantaneous impulses. Bound. Value Problems 2023(1), 15 (2023). https://doi.org/10.1186/s13661-023-01702-9

    Article  MathSciNet  Google Scholar 

  49. Saifullah, S., Shahid, S., Zada, A.: Existence theory and stability analysis to a coupled nonlinear fractional mixed boundary value problem. J. Fract. Cal. Nonlinear Syst. 4(1), 35–53 (2023). https://doi.org/10.48185/jfcns.v4i1.714

Download references

Acknowledgements

V. Govindaraj would like to thank the National Board for Higher Mathematics (NBHM), Department of AtomicEnergy, Government of India, for funding the research project (File No. 02011/18/2023 NBHM (R.P)/ R& DII/5952).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Esmael Samei.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poovarasan, R., Samei, M.E. & Govindaraj, V. Study of three-point impulsive boundary value problems governed by \(\Psi \)-Caputo fractional derivative. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02122-3

Keywords

Mathematics Subject Classification

Navigation