Skip to main content
Log in

Impulsive fractional boundary value problem with p-Laplace operator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem

$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$

where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and

$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$

By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Nieto, J.: Existence of solutions for impulsive anti-periodic boundary value problem of fractional order. Taiwan J. Math. 15(3), 981–993 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anguraj, A., Karthikeyan, P.: Anti-periodic boundary value problem for impulsive fractional integro differential equations. Acta Math. Hung. 13(3), 281–293 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Belmekki, M., Nieto, J., Rodríguez-López, R.: Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl., Art. ID 324561 (2009)

  4. Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces. Bound. Value Probl. Article ID 628916 (2009)

  5. Bogun, I.: Existence of weak solutions for impulsive \(p\)-Laplacian problem with superlinear impulses. Nonlinear Anal. RWA 13, 2701–2707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, J., Chen, H.: Impulsive fractional differential equations with nonlinear boundary conditions. Math. Comput. Model. 55, 303–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. 70, 126–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. El-Sayed, A.: Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal. 33, 181–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Georescu, P., Morosanu, G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190, 790–803 (2007)

    MathSciNet  MATH  Google Scholar 

  11. George, P., Nandakumaran, A., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiao, F., Zhou, Y.: Existence of solution for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems I. Appl. Anal. 78, 153–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  17. Klimek, M.: On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czestochowa University of Technology, Czestochowa (2009)

    Google Scholar 

  18. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6. World Scientific, Teaneck (1989)

    Book  Google Scholar 

  19. Liu, Z., Lu, L., Szántó, I.: Existence of solutions for fractional impulsive differential equations with \(p\)-Laplacian operator. Acta Math. Hung. 141(3), 203–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mawhin, J., Willen, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74. Springer, Berlin (1989)

    Book  Google Scholar 

  21. Mendez, A., Torres, C.: Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivarives. Fract. Calc. Appl. Anal. 18(4), 875–890 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Nyamoradi, N.: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11(1), 75–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nyamoradi, N., Rodrígues-López, R.: On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 271, 874–892 (2015)

    MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Rabinowitz, P.: Minimax method in critical point theory with applications to differential equations, CBMS American Mathematical Society, vol. 65 (1986)

  26. Rivero, M., Trujillo, J., Vázquez, L., Velasco, M.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Rodríguez-López, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1016–1038 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  29. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  30. Schechter, M.: Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  31. Shen, J., Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal. 10, 227–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Szulkin, A.: Ljusternik–Schnirelmann theory on \(C^1\)-manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 119–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Torres, C., Nyamoradi, N.: Existence and multiplicity result for a fractional p-Laplacian equation with combined fractional derivatives (preprint)

  34. Torres, C.: Boundary value problem with fractional \(p\)-Laplacian operator. Adv. Nonlinear Anal. 5(2), 133–146 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Torres, C.: Existence of solution for fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013(259), 1–12 (2013)

    MathSciNet  Google Scholar 

  36. Torres, C.: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5(1), 1–10 (2014)

    MathSciNet  Google Scholar 

  37. Torres, C.: Existence of a solution for fractional forced pendulum. J. Appl. Math. Comput. Mech. 13(1), 125–142 (2014)

    Article  Google Scholar 

  38. Torres, C.: Ground state solution for a class of differential equations with left and right fractional derivatives. Math. Methods Appl. Sci. 38, 5063–5073 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Torres, C.: Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 27, 314–327 (2015)

    Article  Google Scholar 

  40. Xu, J., Wei, Z., Ding, Y.: Existence of weak solutions for \(p\)-Laplacian problem with impulsive effects. Taiwan J. Math. 17(2), 501–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zeidler, E.: Nonlinear Functional Analysis and It’s Applications III Variational Methods and Optimization. Springer, New York (1985)

    Book  MATH  Google Scholar 

  42. Zhang, X., Zhu, C., Wu, Z.: Solvability for a coupled system of fractional differential equations with impulses at resonance. Bound. Value. Probl. 80, 23 (2013). doi:10.1186/1687-2770-2013-80

    MathSciNet  MATH  Google Scholar 

  43. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Hackensack (2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César E. Torres Ledesma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres Ledesma, C.E., Nyamoradi, N. Impulsive fractional boundary value problem with p-Laplace operator. J. Appl. Math. Comput. 55, 257–278 (2017). https://doi.org/10.1007/s12190-016-1035-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1035-6

Keywords

Mathematics Subject Classification

Navigation