Skip to main content
Log in

Finite element methods for non-fourier thermal wave model of bio heat transfer with an interface

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We propose a fitted finite element method for non-Fourier bio heat transfer model in multi-layered media. Specifically, we employ the Maxwell–Cattaneo equation on the physical media that have a heterogeneous conductivity. Well-posedness of the model interface problem is established. A continuous piecewise linear finite element space is employed for the spatially semidiscrete approximation and the temporal discretization is based on backward scheme. Optimal order error estimates for both semidiscrete and fully discrete schemes are proved in \(L^{\infty }(H^1)\) norm. Finally, we give numerical examples to verify our theoretical results. The new results and finite element schemes can be applied in the fields of engineering, medicine, and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, sec edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(3), 601–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkin, H., Xu, L., Holmes, K.: Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 41(2), 97–107 (1994)

    Article  Google Scholar 

  4. Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34(2), 603–639 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basson, M., Stapelberg, B., van Rensburg, N.F.J.: Error estimates for semi-discrete and fully discrete Galerkin finite element approximations of the general linear second-order hyperbolic equation. Numer. Funct. Anal. Optim. 38(4), 466–485 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkebak, R.C.: Heat transfer in biological systems. Int. Rev. Gen. Exp. Zool. 2, 269–344 (1966)

    Article  Google Scholar 

  7. Bischof, J.C.: Micro and nanoscale phenomenon in bioheat transfer. Heat Mass Transf. 42(10), 955 (2006)

    Article  Google Scholar 

  8. Bowman, H.F., Cravalho, E.G., Woods, M.: Theory, measurement, and application of thermal properties of biomaterials. Ann. Rev. Biophys. Bioeng. 4(1), 43–80 (1975)

    Article  Google Scholar 

  9. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)

    MATH  Google Scholar 

  11. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet Jr., P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82(2), 193–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, W., Wang, H., Jordan, P.M., Mickens, R.E., Bejan, A.: A mathematical model for skin burn injury induced by radiation heating. Int. J. Heat Mass Transf. 51(23–24), 5497–5510 (2008)

    Article  MATH  Google Scholar 

  14. Deka, B.: A priori \(L^\infty (L^2)\) error estimates for finite element approximations to the wave equation with interface. Appl. Numer. Math. 115, 142–159 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deka, B., Ahmed, T.: Convergence of finite element method for linear second-order wave equations with discontinuous coefficients. Numer. Methods Partial Differ. Equ. 29(5), 1522–1542 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, J., Zou, J.: Some new a priori estimates for second-order elliptic and parabolic interface problems. J. Differ. Equ. 184(2), 570–586 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joshi, A., Majumdar, A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74(1), 31–39 (1993)

    Article  Google Scholar 

  19. Kumar, P., Kumar, D., Rai, K.: A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment. J. Therm. Biol. 49, 98–105 (2015)

    Article  Google Scholar 

  20. Ladyzhenskaya, O.A., Rivkind, V.Y., Ural’tseva, N.N.: The classical solvability of diffraction problems. Trudy Matematicheskogo Instituta imeni VA Steklova 92, 116–146 (1966)

    MATH  Google Scholar 

  21. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1–2), 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, K.-C., Wang, Y.-N., Chen, Y.-S.: Investigation on the bio-heat transfer with the dual-phase-lag effect. Int. J. Therm. Sci. 58, 29–35 (2012)

    Article  Google Scholar 

  23. Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)

    Article  Google Scholar 

  24. Narasimhan, A., Sadasivam, S.: Non-fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int. J. Heat Mass Transf. 60, 591–597 (2013)

    Article  Google Scholar 

  25. Pennes, H.H.: Analysis of tissue and arterial temperature in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  Google Scholar 

  26. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  27. Rodrigues, D., Pereira, P., Limão-Vieira, P., Stauffer, P., Maccarini, P.F.: Study of the one dimensional and transient bioheat transfer equation: multi-layer solution development and applications. Int. J. Heat Mass Transf. 62, 153–162 (2013)

    Article  Google Scholar 

  28. Semenyuk, V.: Prediction of temperature and damage in an irradiated human eye during retinal photocoagulation. Int. J. Heat Mass Transf. 126, 306–316 (2018)

    Article  Google Scholar 

  29. Showalter, R.E.: Hilbert Space Methods in Partial Differential Equations. Courier Corporation, North Chelmsford (2010)

    Google Scholar 

  30. Singh, S., Singh, S., Li, Z.: A high order compact scheme for a thermal wave model of bio-heat transfer with an interface. Numer. Math. Theory Methods Appl. 11(2), 321–337 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sinha, R.K., Deka, B.: Optimal error estimates for linear parabolic problems with discontinuous coefficients. SIAM J. Numer. Anal. 43(2), 733–749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sinha, R.K., Deka, B.: A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems. Calcolo 43(4), 253–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sinha, R.K., Deka, B.: An unfitted finite-element method for elliptic and parabolic interface problems. IMA J. Numer. Anal. 27(3), 529–549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, Hoboken (2014)

    Book  Google Scholar 

  35. Van Rensburg, N., Van Der Merwe, A.: Analysis of the solvability of linear vibration models. Appl. Anal. 81(5), 1143–1159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, F., Lu, T., Seffen, K., Ng, E.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62(5), 050801 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupen Deka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, B., Dutta, J. Finite element methods for non-fourier thermal wave model of bio heat transfer with an interface. J. Appl. Math. Comput. 62, 701–724 (2020). https://doi.org/10.1007/s12190-019-01304-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01304-8

Keywords

Mathematics Subject Classification

Navigation