Skip to main content
Log in

A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

We derive a priori error estimates in the finite element method for nonselfadjoint elliptic and parabolic interface problems in a two-dimensional convex polygonal domain. Optimal H 1-norm and sub-optimal L 2-norm error estimates are obtained for elliptic interface problems. For parabolic interface problems, the continuous-time Galerkin method is analyzed and an optimal order error estimate in the L 2(0,T;H 1)-norm is established. Further, a discrete-in-time discontinuous Galerkin method is discussed and a related optimal error estimate is obtained.

Keywords: Elliptic and parabolic interface problems, finite element method, spatially discrete scheme, discontinuous Galerkin method, error estimates

Mathematics Subject Classification (1991): 65N15, 65N20

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

  • 2. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  Google Scholar 

  • 3. Babuška, I., Makridakis, Ch.G.: On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34, 389–401 (1997)

    Article  MathSciNet  Google Scholar 

  • 4. Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283–300 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • 5. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Berlin: Springer 1994

  • 6. Chen, Z., Hoffmann, K.-H.: An error estimate for a finite element scheme for a phase field model. IMA J. Numer. Anal. 14, 243–255 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • 7. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • 8. Chrysafinos, K., Hou, L.S.: Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J. Numer. Anal. 40, 282–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • 9. Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978

  • 10. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • 11. Grisvard, P.: Elliptic problems in nonsmooth domains. Boston: Pitman 1985

  • 12. Hoffmann, K.-H., Zou, J.: Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. M2AN Math. Model. Numer. Anal. 29, 629–655 (1995)

    Google Scholar 

  • 13. Ladyzhenskaya, O.A., Rivkind, V.Ja., Ural'ceva, N.N.: The classical solvability of diffraction problems. Trudy Mat. Inst. Steklov. 92, 116–146 (1966); translation: In: Ladyženskaja, O.A. (ed.): Proceedings of the Steklov Institute of Mathematiks, No. 92 (1966): Boundary value problems of mathematical physics. IV. Providence, RI: Amer. Math. Soc. 1968

    MATH  MathSciNet  Google Scholar 

  • 14. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • 15. Li, Z., LeVeque, R.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18, 709–735 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • 16. Li, Z., Lin, T., Wu, X.-H.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • 17. Petzoldt, M.: Regularity and error estimators for elliptic problems with discontinuous coefficients. Ph.D. thesis. Berlin: Freie Universität 2001

  • 18. Oden, J.T., Wellford, L.C.: A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. I. Variational theory. Comput. Methods Appl. Mech. Engrg. 8, 1–16 (1976)

    Article  MathSciNet  Google Scholar 

  • 19. Oden, J.T., Wellford, L.C.: A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. II. Accuracy and convergence. Comput. Methods Appl. Mech. Engrg. 8, 17–36 (1976)

    MathSciNet  Google Scholar 

  • 20. Ren, X., Wei, J.: On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Amer. Math. Soc. 343, 749–763 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • 21. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • 22. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970

  • 23. Thomée, V.: Galerkin finite element methods for parabolic problems. Berlin: Springer 1997

  • 24. Ženíšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58, 51–77 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, R.K., Deka, B. A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems. Calcolo 43, 253–277 (2006). https://doi.org/10.1007/s10092-006-0122-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-006-0122-8

Navigation