Skip to main content
Log in

The development of an ALE finite element and discontinuous Galerkin method for the non-isothermal non-Newtonian FSI problem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we develop a semi-implicit partitioned finite element and discontinuous Galerkin method for the non-isothermal non-Newtonian fluid structure interaction (NNFSI) problem within the arbitrary Lagrangian–Eulerian (ALE) framework. The structure is composed of the elastic solid material. The entire mathematical model consists of the governing equations of the non-Newtonian fluid and the structure, as well as the boundary conditions on the contacting interface. The rheological behavior of non-Newtonian fluid is described according to the power law constitutive equation. The whole system is split into several sub-equations and then appropriate finite element method or discontinuous Galerkin method is employed for the spatial discretizations of them. As for the deformation of the structure and the change of the fluid area and computational mesh, we employ the moving mesh technique to handle them. The problem involving a hot flexible rod fixed on the hot bottom of an irregular pipe is fully investigated. The influences of the fluid inlet velocity and the behavior of the fluid on the deformation of the rod and the temperature distribution are all analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gravemeier V, Civaner SM, Wall WA (2022) A partitioned-monolithic finite element method for thermo-fluid–structure interaction[J]. Comput Methods Appl Mech Eng 401:115596

    Article  MathSciNet  Google Scholar 

  2. Saleh H, Naganthran K, Hashim I et al (2022) Role of fluid-structure interaction in free convection in square open cavity with double flexible oscillating fins[J]. Alex Eng J 61(2):1217–1234

    Article  Google Scholar 

  3. Al-Amiri A, Khanafer K (2011) Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall[J]. Int J Heat Mass Transf 54(17–18):3826–3836

    Article  Google Scholar 

  4. Ganesan S, Rajasekaran S, Tobiska L (2014) Numerical modeling of the non-isothermal liquid droplet impact on a hot solid substrate[J]. Int J Heat Mass Transf 78:670–687

    Article  Google Scholar 

  5. Jamesahar E, Sabour M, Shahabadi M et al (2020) Mixed convection heat transfer by nanofluids in a cavity with two oscillating flexible fins: a fluid–structure interaction approach[J]. Appl Math Model 82:72–90

    Article  MathSciNet  Google Scholar 

  6. Hakim MA, Ahad AI, Karim AU et al (2022) Fluid structure interaction and heat transfer enhancement with dynamic flexible flow modulator[J]. Int Commun Heat Mass Transfer 134:105983

    Article  Google Scholar 

  7. Ghalambaz M, Jamesahar E, Ismael MA et al (2017) Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity[J]. Int J Therm Sci 111:256–273

    Article  Google Scholar 

  8. Ghalambaz M, Mehryan S, Alsabery AI et al (2020) Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure[J]. Meccanica 55:1561–1584

    Article  MathSciNet  Google Scholar 

  9. Long T, Yang P, Liu M (2020) A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems[J]. Int J Mech Sci 174:105558

    Article  Google Scholar 

  10. Shahrestani AB, Alshuraiaan B, Izadi M (2021) Combined natural convection-FSI inside a circular enclosure divided by a movable barrier[J]. Int Commun Heat Mass Transfer 126:105426

    Article  Google Scholar 

  11. Alshuraiaan B, Shahrestani AB, Izadi M (2023) Numerical studys on passive paramerters of a fluid-solid interaction problem derived by natural convection in a circular enclosure[J]. Alex Eng J 63:415–426

    Article  Google Scholar 

  12. Long T, Su X (2023) Coupling edge-based smoothed finite element method with incompressible smoothed particle hydrodynamics for thermal fluid structure interaction problems[J]. J Fluids Struct 118:103855

    Article  Google Scholar 

  13. Yaseen DT, Ismael MA (2020) Analysis of power law fluid-structure interaction in an open trapezoidal cavity[J]. Int J Mech Sci 174:105481

    Article  Google Scholar 

  14. Ghalambaz M, Mehryan S, Feeoj R K, et al. (2020) Free convective heat transfer of a non-Newtonian fluid in a cavity containing a thin flexible heater plate: an Eulerian–Lagrangian approach[J]. J Thermal Anal Calorim:1–16.

  15. Shahabadi M, Mehryan S, Ghalambaz M et al (2021) Controlling the natural convection of a non-Newtonian fluid using a flexible fin[J]. Appl Math Model 92:669–686

    Article  MathSciNet  Google Scholar 

  16. Fernández MA, Gerbeau JF, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid[J]. Int J Numer Meth Eng 69(4):794–821

    Article  MathSciNet  Google Scholar 

  17. Quaini A, Quarteroni A (2007) A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method[J]. Math Models Methods Appl Sci 17(06):957–983

    Article  MathSciNet  Google Scholar 

  18. Naseri A, Lehmkuhl O, Gonzalez I et al (2018) A semi-implicit coupling technique for fluid–structure interaction problems with strong added-mass effect[J]. J Fluids Struct 80:94–112

    Article  Google Scholar 

  19. Souli M, Ouahsine A, Lewin L (2000) ALE formulation for fluid–structure interaction problems[J]. Comput Methods Appl Mech Eng 190(5–7):659–675

    Article  Google Scholar 

  20. Takashi N, Hughes TJ (1992) An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body[J]. Comput Methods Appl Mech Eng 95(1):115–138

    Article  Google Scholar 

  21. Aguirre A, Castillo E, Cruchaga M et al (2018) Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type[J]. J Nonnewton Fluid Mech 257:22–43

    Article  MathSciNet  Google Scholar 

  22. Ruz O, Castillo E, Cruchaga M et al (2021) Numerical study of the effect of blockage ratio on the flow past one and two cylinders in tandem for different power-law fluids[J]. Appl Math Model 89:1640–1662

    Article  MathSciNet  Google Scholar 

  23. Gao P, Wang X, Ouyang J (2019) Numerical investigation of non-isothermal viscoelastic filling process by a coupled finite element and discontinuous Galerkin method[J]. Int J Heat Mass Transf 140:227–242

    Article  Google Scholar 

  24. Fambri F (2020) Discontinuous Galerkin methods for compressible and incompressible flows on space–time adaptive meshes: toward a novel family of efficient numerical methods for fluid dynamics[J]. Arch Computat Methods Eng 27(1):199–283

    Article  MathSciNet  Google Scholar 

  25. Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction[J]. Comput Fluids 36(1):77–91

    Article  MathSciNet  Google Scholar 

  26. Porziani S, Groth C, Waldman W et al (2021) Automatic shape optimisation of structural parts driven by BGM and RBF mesh morphing[J]. Int J Mech Sci 189:105976

    Article  Google Scholar 

  27. Ryzhakov P, Marti J, Dialami N (2022) A unified arbitrary Lagrangian-Eulerian model for fluid–structure interaction problems involving flows in flexible channels[J]. J Sci Comput 90(3):85

    Article  MathSciNet  Google Scholar 

  28. Vázquez JGV (2007) Nonlinear Analysis of Orthotropic Membrane and Shell Structures Including Fluid-Structure Interaction. In: Universitat Politècnica de Catalunya (UPC)

  29. Soti AK, Bhardwaj R, Sheridan J (2015) Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement[J]. Int J Heat Mass Transf 84:1070–1081

    Article  Google Scholar 

  30. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer

  31. Moreno L, Castañar I, Codina R et al (2023) Numerical simulation of Fluid-Structure Interaction problems with viscoelastic fluids using a log-conformation reformulation[J]. Comput Methods Appl Mech Eng 410:115986

    Article  MathSciNet  Google Scholar 

  32. Bhardwaj R, Mittal R (2012) Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation[J]. AIAA J 50(7):1638–1642

    Article  Google Scholar 

  33. Zhang C, Rezavand M, Hu X (2021) A multi-resolution SPH method for fluid-structure interactions[J]. J Comput Phys 429:110028

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the support of the National Natural Science Foundation of China (Grant No. 11901051, 11971075), Young Talent Fund of Association for Science and Technology in Shaanxi, China (Grant No. 20220504), the Fundamental Research Funds for the Central Universities, CHD (Grant No. 300102122107) and the International Science and Technology Cooperation Program of Shaanxi Key Research & Development Plan (Grant No. 2019KWZ-08).

Funding

The funding has been received from National Natural Science Foundation of China Grant no. 11901051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puyang Gao.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Hu, X. The development of an ALE finite element and discontinuous Galerkin method for the non-isothermal non-Newtonian FSI problem. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01986-0

Keywords

Navigation