Skip to main content

Advertisement

Log in

Diabetic Cardiomyopathy: Distinct and Preventable Entity or Inevitable Consequence?

  • Heart Failure Prevention (W Tang, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Diabetes represents one of the greatest public health threats of the twenty-first century. It is well recognized that diabetes is an important risk factor for the development of cardiovascular disease including heart failure. Although heart failure in diabetic patients is often multifactorial, there is evidence that diabetes can have direct affects on cardiac function, a condition referred to as diabetic cardiomyopathy. The relationship between metabolic disease and cardiac dysfunction has been an area of intense basic and clinical investigation for nearly 4 decades. Despite these efforts, specific therapies to prevent and/or reverse diabetic cardiomyopathy have been lacking. This review will discuss the current state of the field with a focus on strategies to minimize the impact of metabolic stress on cardiac dysfunction and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Diabetes Statistics 2011. In http://diabetes.niddk.nih.gov/dm/pubs/statistics/. Edited by; 2011.

  2. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602.

    Article  CAS  PubMed  Google Scholar 

  3. From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119:591–9.

    Article  PubMed  Google Scholar 

  4. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham Study. Jama. 1979;241:2035–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech. 2009;2:454–66.

    Article  CAS  PubMed  Google Scholar 

  6. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation. 2000;101:2271–6.

    Article  CAS  PubMed  Google Scholar 

  7. de Simone G, Palmieri V, Bella JN, Celentano A, Hong Y, Oberman A, et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens. 2002;20:323–31.

    Article  PubMed  Google Scholar 

  8. Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol. 1991;68:85–9.

    Article  CAS  PubMed  Google Scholar 

  9. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation. 2003;107:448–54.

    Article  CAS  PubMed  Google Scholar 

  10. Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Eguchi K, Kario K, Hoshide S, Ishikawa J, Morinari M, Shimada K. Type 2 diabetes is associated with left ventricular concentric remodeling in hypertensive patients. Am J Hypertens. 2005;18:23–9.

    Article  PubMed  Google Scholar 

  12. Bella JN, Devereux RB, Roman MJ, Palmieri V, Liu JE, Paranicas M, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol. 2001;87:1260–5.

    Article  CAS  PubMed  Google Scholar 

  13. Palmieri V, Bella JN, Arnett DK, Liu JE, Oberman A, Schuck MY, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2001;103:102–7.

    Article  CAS  PubMed  Google Scholar 

  14. Lindman BR, Arnold SV, Madrazo JA, Zajarias A, Johnson SN, Perez JE, et al. The adverse impact of diabetes mellitus on left ventricular remodeling and function in patients with severe aortic stenosis. Circ Heart Fail. 2011;4:286–92. This is the first paper to show an interaction between diabetes and aortic stenosis with regard to progression of adverse LV remodeling.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Falcao-Pires I, Hamdani N, Borbely A, Gavina C, Schalkwijk CG, van der Velden J, et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation. 2011;124:1151–9.

    Article  PubMed  Google Scholar 

  16. Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-Goncalves D, Miranda-Silva D, et al. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol. 2011;106:801–14.

    Article  CAS  PubMed  Google Scholar 

  17. de Simone G, Devereux RB, Chinali M, Roman MJ, Lee ET, Resnick HE, et al. Metabolic syndrome and left ventricular hypertrophy in the prediction of cardiovascular events: the Strong Heart Study. Nutr Metab Cardiovasc Dis. 2009;19:98–104.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Brooks BA, Franjic B, Ban CR, Swaraj K, Yue DK, Celermajer DS, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab. 2008;10:739–46.

    Article  CAS  PubMed  Google Scholar 

  19. Shivalkar B, Dhondt D, Goovaerts I, Van Gaal L, Bartunek J, Van Crombrugge P, et al. Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol. 2006;97:77–82.

    Article  PubMed  Google Scholar 

  20. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology. 2002;98:33–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail. 2014;20:304–9. In this study, careful cardiac function phenotyping was performed on a community cohort of patients with diabetes to assess the prevalence of sub-clinical cardiac dysfunction and to relate these findings to prognosis.

    Article  PubMed  Google Scholar 

  22. Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz R, Howard BV, et al. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol. 2001;37:1943–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mildenberger RR, Bar-Shlomo B, Druck MN, Jablonsky G, Morch JE, Hilton JD, et al. Clinically unrecognized ventricular dysfunction in young diabetic patients. J Am Coll Cardiol. 1984;4:234–8.

    Article  CAS  PubMed  Google Scholar 

  24. Mustonen JN, Uusitupa MI, Laakso M, Vanninen E, Lansimies E, Kuikka JT, et al. Left ventricular systolic function in middle-aged patients with diabetes mellitus. Am J Cardiol. 1994;73:1202–8.

    Article  CAS  PubMed  Google Scholar 

  25. Galderisi M, de Simone G, Innelli P, Turco A, Turco S, Capaldo B, et al. Impaired inotropic response in type 2 diabetes mellitus: a strain rate imaging study. Am J Hypertens. 2007;20:548–55.

    Article  PubMed  Google Scholar 

  26. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Shanks M, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2009;104:1398–401.

    Article  PubMed  Google Scholar 

  27. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660–71.

    Article  CAS  PubMed  Google Scholar 

  28. Battiprolu PK, Lopez-Crisosto C, Wang ZV, Nemchenko A, Lavandero S, Hill JA. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci. 2013;92:609–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mandavia CH, Aroor AR, Demarco VG, Sowers JR. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 2013;92:601–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18:149–66.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.

    Article  CAS  PubMed  Google Scholar 

  32. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53:2366–74.

    Article  CAS  PubMed  Google Scholar 

  33. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  34. Peterson LR, Saeed IM, McGill JB, Herrero P, Schechtman KB, Gunawardena R, et al. Sex and type 2 diabetes: obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity (Silver Spring). 2012;20:802–10. This human study demonstrates that cardiac metabolism is altered by diabetes independent of obesity and that gender further modulates this interaction.

    Article  CAS  Google Scholar 

  35. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rijzewijk LJ, van der Meer RW, Lamb HJ, de Jong HW, Lubberink M, Romijn JA, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54:1524–32.

    Article  CAS  PubMed  Google Scholar 

  37. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003;14:281–7.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb J. 2004;18:1692–700.

    Article  CAS  PubMed  Google Scholar 

  39. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107:813–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96:225–33.

    Article  CAS  PubMed  Google Scholar 

  41. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003;111:419–26.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Hooi Ewe S, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation. 2010;122:2538–44.

    Article  PubMed  Google Scholar 

  43. Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52:1793–9.

    Article  PubMed  Google Scholar 

  44. Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009;284:36312–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liu L, Yu S, Khan RS, Homma S, Schulze PC, Blaner WS, et al. Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARgamma transgenic mice. J Lipid Res. 2012;53:1482–92. This study revealed that increasing triglyceride synthesis can improve cardiac function even though lipid accumulation is increased. Thus supporting the hypothesis that channel lipids away from toxic fates can be cardioprotective.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008;49:2101–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schilling JD, Machkovech HM, Kim AH, Schwendener R, Schaffer JE. Macrophages modulate cardiac function in lipotoxic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2012;303:H1366–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007;56:2457–66.

    Article  CAS  PubMed  Google Scholar 

  49. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54:1891–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    Article  PubMed  Google Scholar 

  51. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014. This investigation utilized human samples obtained from obese or obese-diabetic individuals to explore the features of mitochondrial abnormalities that distinguish the diabetic state. Although mitochondrial dysfunction was noted in both obese and diabetic cardiac samples, reactive oxygen species generation was increased in diabetic tissue.

  52. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  PubMed  Google Scholar 

  53. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–86.

    Article  PubMed  Google Scholar 

  54. Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta. 2014;1840:1331–44.

    Article  CAS  PubMed  Google Scholar 

  55. El Messaoudi S, Rongen GA, Riksen NP. Metformin therapy in diabetes: the role of cardioprotection. Curr Atheroscler Rep. 2013;15:314.

    Article  PubMed  Google Scholar 

  56. Aguilar D, Chan W, Bozkurt B, Ramasubbu K, Deswal A. Metformin use and mortality in ambulatory patients with diabetes and heart failure. Circ Heart Fail. 2011;4:53–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Romero SP, Andrey JL, Garcia-Egido A, Escobar MA, Perez V, Corzo R, et al. Metformin therapy and prognosis of patients with heart failure and new-onset diabetes mellitus. A propensity-matched study in the community. Int J Cardiol. 2011.

  58. Andersson C, Sogaard P, Hoffmann S, Hansen PR, Vaag A, Major-Pedersen A, et al. Metformin is associated with improved left ventricular diastolic function measured by tissue Doppler imaging in patients with diabetes. Eur J Endocrinol. 2010;163:593–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ladeiras-Lopes R, Fontes-Carvalho R, Bettencourt N, Sampaio F, Gama V, Leite-Moreira AF. METformin in DIastolic Dysfunction of MEtabolic syndrome (MET-DIME) trial: rationale and study design: MET-DIME trial. Cardiovasc Drugs Ther. 2014;28:191–6.

    Article  CAS  PubMed  Google Scholar 

  60. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100:1208–17.

    Article  CAS  PubMed  Google Scholar 

  61. Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, et al. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation. 2010;121:426–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, et al. Deficiency of a lipid droplet protein, Perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol. 2014.

  63. Angin Y, Steinbusch LK, Simons PJ, Greulich S, Hoebers NT, Douma K, et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem J. 2012;448:43–53.

    Article  CAS  PubMed  Google Scholar 

  64. Bessi VL, Labbe SM, Huynh DN, Menard L, Jossart C, Febbraio M, et al. EP 80317, a selective CD36 ligand, shows cardioprotective effects against post-ischaemic myocardial damage in mice. Cardiovasc Res. 2012;96:99–108.

    Article  CAS  PubMed  Google Scholar 

  65. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A. 2003;100:1226–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, et al. Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity (Silver Spring). 2011;19:1804–12. This study demonstrates that weight loss is associated with improved cardiac metabolism and function in patients with early-stage heart disease and obesity.

    Article  CAS  Google Scholar 

  67. Ng AC, Auger D, Delgado V, van Elderen SG, Bertini M, Siebelink HM, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T(1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging. 2012;5:51–9.

    Article  PubMed  Google Scholar 

  68. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.

    Article  CAS  PubMed  Google Scholar 

  69. Chowdhry MF, Vohra HA, Galinanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: role of caspases and poly-adenosine diphosphate-ribose polymerase. J Thorac Cardiovasc Surg. 2007;134:124–31. 131 e121-123.

    Article  CAS  PubMed  Google Scholar 

  70. Shimizu M, Umeda K, Sugihara N, Yoshio H, Ino H, Takeda R, et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol. 1993;46:32–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Mori J, Patel VB, Abo Alrob O, Basu R, Altamimi T, Desaulniers J, et al. Angiotensin 1–7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail. 2014;7:327–39. This recent investigation demonstrates that targeting the renin-angiotensin system can improve metabolism and inflammation. Together, these effects reverse the cardiac dysfunction observed in the Ob/Ob model of diabetic cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  72. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bucker-Gartner C, et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes. 2007;56:1834–41.

    Article  CAS  PubMed  Google Scholar 

  73. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, et al. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol. 2007;102:500–7.

    Article  CAS  PubMed  Google Scholar 

  74. Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55:798–805.

    Article  CAS  PubMed  Google Scholar 

  75. Schilling JD, Machkovech HM, He L, Diwan A, Schaffer JE. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J Immunol. 2013;190:1285–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Weber KJ, Schilling JD. Lysosomes integrate metabolic-inflammatory crosstalk in primary macrophage inflammasome activation. J Biol Chem. 2014.

  77. Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med. 2014.

  78. Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine. 2011;56:256–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH K08HL098373 (JDS) and NIH RO1HL111094 (DLM)

Compliance with Ethics Guidelines

Conflict of Interest

Douglas Mann and Joel Schilling have no disclosures relevant to this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Schilling.

Additional information

This article is part of the Topical Collection on Heart Failure Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, J.D., Mann, D.L. Diabetic Cardiomyopathy: Distinct and Preventable Entity or Inevitable Consequence?. Curr Cardiovasc Risk Rep 8, 417 (2014). https://doi.org/10.1007/s12170-014-0417-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-014-0417-2

Keywords

Navigation