Skip to main content

Advertisement

Log in

Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Chronic pressure-overload and diabetes mellitus are two frequent disorders affecting the heart. We aimed to characterize myocardial structural and functional changes induced by both conditions. Pressure-overload was established in Wistar-han male rats by supra-renal aortic banding. Six-weeks later, diabetes was induced by streptozotocin (65 mg/kg,ip), resulting in four groups: SHAM, banding (BA), diabetic (DM) and diabetic-banding (DB). Six-weeks later, pressure–volume loops were obtained and left ventricular samples were collected to evaluate alterations in insulin signalling pathways, extracellular matrix as well as myofilament function and phosphorylation. Pressure-overload increased cardiomyocyte diameter (BA 22.0 ± 0.4 μm, SHAM 18.2 ± 0.3 μm) and myofilament maximal force (BA 25.7 ± 3.6 kN/m2, SHAM 18.6 ± 1.4 kN/m2), Ca2+ sensitivity (BA 5.56 ± 0.02, SHAM 5.50 ± 0.02) as well as MyBP-C, Akt and Erk phosphorylation, while decreasing rate of force redevelopment (K tr; BA 14.9 ± 1.1 s−1, SHAM 25.2 ± 1.5 s−1). At the extracellular matrix level, fibrosis (BA 10.8 ± 0.9%, SHAM 5.3 ± 0.6%), pro-MMP-2 and MMP-9 activities increased and, in vivo, relaxation was impaired (τ; BA 14.0 ± 0.9 ms, SHAM 12.9 ± 0.4 ms). Diabetes increased cardiomyocyte diameter, fibrosis (DM 21.4 ± 0.4 μm, 13.9 ± 1.8%, DB 20.6 ± 0.4 μm, 13.8 ± 0.8%, respectively), myofilament Ca2+sensitivity (DM 5.57 ± 0.02, DB 5.57 ± 0.01), advanced glycation end-product deposition (DM 4.9 ± 0.6 score/mm2, DB 5.1 ± 0.4 score/mm2, SHAM 2.1 ± 0.3 score/mm2), and apoptosis, while decreasing K tr (DM 13.5 ± 1.9 s−1, DB 15.2 ± 1.4 s−1), Akt phosphorylation and MMP-9/TIMP-1 and MMP-1/TIMP-1 ratios. Diabetic hearts were stiffer (higher end-diastolic-pressure: DM 7.0 ± 1.2 mmHg, DB 6.7 ± 0.7 mmHg, SHAM 5.3 ± 0.4 mmHg, steeper end-diastolic-pressure–volume relation: DM 0.59 ± 0.18, DB 0.83 ± 0.17, SHAM 0.41 ± 0.10), and hypo-contractile (decreased end-systolic-pressure-volume-relation). DB animals presented further pulmonary congestion (Lungs/body-weight: DB 5.23 ± 0.21 g/kg, SHAM 3.80 ± 0.14 g/kg) as this group combined overload-induced relaxation abnormalities and diabetes-induced stiffness. Diabetes mellitus and pressure overload led to distinct diastolic dysfunction phenotypes: while diabetes promoted myocardial stiffening, pressure overload impaired relaxation. The association of these damages accelerates the progression of diastolic heart failure progression in diabetic-banded animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anversa P, Li P, Malhotra A, Zhang X, Herman MV, Capasso JM (1993) Effects of hypertension and coronary constriction on cardiac function, morphology, and contractile proteins in rats. Am J Physiol 265:H713–H724

    PubMed  CAS  Google Scholar 

  2. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12. doi:10.1097/01.hjh.0000042892.24999.92

    Article  PubMed  CAS  Google Scholar 

  3. Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF (1999) Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22:1186–1190. doi:10.2337/diacare.22.7.1186

    Article  PubMed  CAS  Google Scholar 

  4. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781. doi:10.1161/01.CIR.0000155257.33485.6D

    Article  PubMed  Google Scholar 

  5. Brown RA, Filipovich P, Walsh MF, Sowers JR (1996) Influence of sex, diabetes and ethanol on intrinsic contractile performance of isolated rat myocardium. Basic Res Cardiol 91:353–360. doi:10.1007/BF00788714

    PubMed  CAS  Google Scholar 

  6. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321. doi:10.1056/NEJM198805193182007

    Article  PubMed  CAS  Google Scholar 

  7. Capasso JM, Palackal T, Olivetti G, Anversa P (1990) Left ventricular failure induced by long-term hypertension in rats. Circ Res 66:1400–1412

    PubMed  CAS  Google Scholar 

  8. DeBosch BJ, Muslin AJ (2008) Insulin signaling pathways and cardiac growth. J Mol Cell Cardiol 44:855–864. doi:10.1016/j.yjmcc.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  9. Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247. doi:10.1016/S0008-6363(98)00186-2

    Article  PubMed  CAS  Google Scholar 

  10. Dubrey SW, Reaveley DR, Seed M, Lane DA, Ireland H, O’Donnell M, O’Connor B, Noble MI, Leslie RD (1994) Risk factors for cardiovascular disease in IDDM. A study of identical twins. Diabetes 43:831–835

    Article  PubMed  CAS  Google Scholar 

  11. Fein FS, Zola BE, Malhotra A, Cho S, Factor SM, Scheuer J, Sonnenblick EH (1990) Hypertensive-diabetic cardiomyopathy in rats. Am J Physiol 258:H793–H805. doi:10.2337/diabetes.43.6.831

    PubMed  CAS  Google Scholar 

  12. Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed  CAS  Google Scholar 

  13. Grossman E, Messerli FH (1996) Diabetic and hypertensive heart disease. Ann Intern Med 125:304–310

    PubMed  CAS  Google Scholar 

  14. Gupta MP (2007) Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 43:388–403. doi:10.1016/j.yjmcc.2007.07.045

    Article  PubMed  CAS  Google Scholar 

  15. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235. doi:10.1152/ajpheart.00207.2003

    PubMed  CAS  Google Scholar 

  16. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A (2006) Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol 291:H2424–H2430. doi:10.1152/ajpheart.00369.2006

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G (2009) Diastolic heart failure: a misNOmer. Basic Res Cardiol 104:465–467. doi:10.1007/s00395-009-0025-3

    Article  PubMed  Google Scholar 

  18. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142. doi:10.1038/13459

    Article  PubMed  CAS  Google Scholar 

  19. Huang J, Shelton JM, Richardson JA, Kamm KE, Stull JT (2008) Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy. J Biol Chem 283:19748–19756. doi:10.1074/jbc.M802605200

    Article  PubMed  CAS  Google Scholar 

  20. Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB, Kim JH (2010) Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 105:399–407. doi:10.1007/s00395-009-0071-x

    Article  PubMed  CAS  Google Scholar 

  21. Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455. doi:10.1007/BF01002772

    Article  PubMed  CAS  Google Scholar 

  22. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  23. Leite-Moreira AF (2006) Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 92:712–718. doi:10.1136/hrt.2005.062950

    Article  PubMed  Google Scholar 

  24. Li Q, Sun SZ, Wang Y, Tian YJ, Liu MH (2007) The roles of MMP-2/TIMP-2 in extracellular matrix remodelling in the hearts of STZ-induced diabetic rats. Acta Cardiol 62:485–491. doi:10.2143/AC.62.5.2023412

    Article  PubMed  Google Scholar 

  25. Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S (1990) Abnormal cardiac function in the streptozotocin-diabetic rat Changes in active and passive properties of the left ventricle. J Clin Invest 86:481–488. doi:10.1172/JCI114734

    Article  PubMed  CAS  Google Scholar 

  26. McClellan G, Kulikovskaya I, Winegrad S (2001) Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys J 81:1083–1092. doi:10.1016/S0006-3495(01)75765-7

    Article  PubMed  CAS  Google Scholar 

  27. Nagatomo Y, Carabello BA, Coker ML, McDermott PJ, Nemoto S, Hamawaki M, Spinale FG (2000) Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 278:H151–H161

    PubMed  CAS  Google Scholar 

  28. Perlini S, Palladini G, Ferrero I, Tozzi R, Fallarini S, Facoetti A, Nano R, Clari F, Busca G, Fogari R, Ferrari AU (2005) Sympathectomy or doxazosin, but not propranolol, blunt myocardial interstitial fibrosis in pressure-overload hypertrophy. Hypertension 46:1213–1218

    Google Scholar 

  29. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J (2004) Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44:1609–1618. doi:10.1016/j.jacc.2004.07.023

    Article  PubMed  CAS  Google Scholar 

  30. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605. doi:10.1161/01.RES.0000207406.94146.c2

    Article  PubMed  CAS  Google Scholar 

  31. Regan TJ, Khan MI, Ettinger PO, Haider B, Lyons MM, Oldewurtel HA (1974) Myocardial function and lipid metabolism in the chronic alcoholic animal. J Clin Invest 54:740–752. doi:10.1172/JCI107812

    Article  PubMed  CAS  Google Scholar 

  32. Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272:H148–H158

    PubMed  CAS  Google Scholar 

  33. Riva E, Andreoni G, Bianchi R, Latini R, Luvara G, Jeremic G, Traquandi C, Tuccinardi L (1998) Changes in diastolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes. Pharmacol Res 37:233–240. doi:10.1006/phrs.1998.0290

    Article  PubMed  CAS  Google Scholar 

  34. Rodgers RL, Davidoff AJ, Mariani MJ (1991) Cardiac function of the diabetic renovascular hypertensive rat: effects of insulin and thyroid hormone treatment. Can J Physiol Pharmacol 69:346–354. doi:10.1139/y91-053

    Article  PubMed  CAS  Google Scholar 

  35. Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW 2nd, Klevitsky R, Seidman CE, Seidman JG, Robbins J (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97:1156–1163. doi:10.1161/01.RES.0000190605.79013.4d

    Article  PubMed  CAS  Google Scholar 

  36. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68. doi:10.1007/s00395-007-0689-5

    Article  PubMed  CAS  Google Scholar 

  37. Schalkwijk CG, Baidoshvili A, Stehouwer CD, van Hinsbergh VW, Niessen HW (2004) Increased accumulation of the glycoxidation product Nepsilon-(carboxymethyl)lysine in hearts of diabetic patients: generation and characterisation of a monoclonal anti-CML antibody. Biochim Biophys Acta 1636:82–89

    PubMed  CAS  Google Scholar 

  38. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530. doi:10.1016/S0008-6363(99)00431-9

    Article  PubMed  CAS  Google Scholar 

  39. Spinale FG, Coker ML, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225–238. doi:10.1016/S0008-6363(99)00431-9

    Article  PubMed  CAS  Google Scholar 

  40. Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    PubMed  CAS  Google Scholar 

  41. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T (1992) Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 44:103–150

    PubMed  CAS  Google Scholar 

  42. Tozzi R, Palladini G, Fallarini S, Nano R, Gatti C, Presotto C, Schiavone A, Micheletti R, Ferrari P, Fogari R, Perlini S (2007) Matrix metalloprotease activity is enhanced in the compensated but not in the decompensated phase of pressure overload hypertrophy. Am J Hypertens 20:663–669. doi:10.1016/j.amjhyper.2007.01.016

    Article  PubMed  CAS  Google Scholar 

  43. van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973. doi:10.1161/CIRCULATIONAHA.105.587519

    Article  PubMed  Google Scholar 

  44. van Hoeven KH, Factor SM (1990) A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82:848–855

    Article  PubMed  Google Scholar 

  45. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Bohm M, Pauschinger M, Schultheiss HP, Tschope C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327. doi:10.1007/s00395-008-0715-2

    Article  PubMed  Google Scholar 

  46. Volz HC, Seidel C, Laohachewin D, Kaya Z, Muller OJ, Pleger ST, Lasitschka F, Bianchi ME, Remppis A, Bierhaus A, Katus HA, Andrassy M (2010) HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 105:805–820. doi:10.1007/s00395-010-0114-3

    Article  PubMed  CAS  Google Scholar 

  47. Weisberg A, Winegrad S (1998) Relation between crossbridge structure and actomyosin ATPase activity in rat heart. Circ Res 83:60–72

    PubMed  CAS  Google Scholar 

  48. Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89:397–410. doi:10.1007/BF00788278

    Article  PubMed  CAS  Google Scholar 

  49. Wiesner RJ, Ehmke H, Faulhaber J, Zak R, Ruegg JC (1997) Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Circulation 95:1253–1259

    PubMed  CAS  Google Scholar 

  50. Yang B, Larson DF, Watson R (1999) Age-related left ventricular function in the mouse: analysis based on in vivo pressure-volume relationships. Am J Physiol 277:H1906–H1913

    PubMed  CAS  Google Scholar 

  51. Zaremba R, Merkus D, Hamdani N, Lamers JML, Paulus WJ, dos Remedios C, Duncker DJ, Stienen GJM, van der Velden J (2007) Quantitative analysis of myofilament protein phosphorylation in small cardiac biopsies. Proteomics Clin Appl 1:1285. doi:10.1002/prca.200600891

    Article  PubMed  CAS  Google Scholar 

  52. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959. doi:10.1056/NEJMoa032566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Doctor José Magalhães and his group for kindly providing anti-Bax and anti-Bcl-2 antibodies. This work was supported by the Portuguese Foundation for Science and Technology (grant number PIC/IC/82943/2007) through the Cardiovascular R&D Unit (FCT nr. 51/94) and by the European Union Project FP7-HEALTH-2010: “MEDIA-Metabolic Road to Diastolic Heart Failure”. #HEALTH. 2010.2.4.2-4.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelino F. Leite-Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcão-Pires, I., Palladini, G., Gonçalves, N. et al. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 106, 801–814 (2011). https://doi.org/10.1007/s00395-011-0184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0184-x

Keywords

Navigation