Skip to main content

Advertisement

Log in

1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5ʹ terminal oligopyrimidine (5ʹTOP) mRNAs as well as other mRNAs and binds to both the 5’TOP motif and the 3’-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The 1H, 13C, and 15N resonance assignments have been deposited in the BMRB (https://bmrb.io/) under accession number 52383.

References

  • Al-Ashtal HA, Rubottom CM, Leeper TC, Berman AJ (2021) The LARP1 La-Module recognizes both ends of TOP mRNAs. RNA Biol 18(2):248–258. https://doi.org/10.1080/15476286.2019.1669404

    Article  Google Scholar 

  • Berman AJ, Thoreen CC, Dedeic Z, Chettle J, Roux PP, Blagden SP (2021) Controversies around the function of LARP1. RNA Biol 18(2):207–217. https://doi.org/10.1080/15476286.2020.1733787

    Article  Google Scholar 

  • Blackinton JG, Keene JD (2014) Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol 34:44–54. https://doi.org/10.1016/j.semcdb.2014.05.014

    Article  Google Scholar 

  • Bousquet-Antonelli C, Deragon JM (2009) A comprehensive analysis of the La-motif protein superfamily. RNA 15(5):750–764. https://doi.org/10.1261/rna.1478709

    Article  Google Scholar 

  • Burrows C, Latip NA, Lam SJ, Carpenter L, Sawicka K, Tzolovsky G, Gabra H, Bushell M, Glover DM, Willis AE, Blagden SP (2010) The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res 38(16):5542–5553. https://doi.org/10.1093/nar/gkq294

    Article  Google Scholar 

  • Cai L, Fritz D, Stefanovic L, Stefanovic B (2010) Binding of LARP6 to the conserved 5’ stem-loop regulates translation of mRNAs encoding type I collagen. J Mol Biol 395(2):309–326. https://doi.org/10.1016/j.jmb.2009.11.020

    Article  Google Scholar 

  • Carlomagno T, Maurer M, Sattler M, Schwendinger MG, Glaser SJ, Griesinger C (1996) PLUSH TACSY: homonuclear planar TACSY with two-band selective shaped pulses applied to Cα, C′ transfer and Cβ, caromatic correlations. J Biomol NMR 8(2):161–170. https://doi.org/10.1007/BF00211162

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102. https://doi.org/10.1038/nature01070

    Article  ADS  Google Scholar 

  • Clowes RT, Boucher W, Hardman CH, Domaille PJ, Laue ED (1993) A 4D HCC(CO)NNH experiment for the correlation of aliphatic side-chain and backbone resonances in 13C/15N-labelled proteins. J Biomol NMR 3(3):349–354. https://doi.org/10.1007/BF00212520

    Article  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A new 3D HN(CA)HA experiment for obtaining fingerprint HN-Hα cross peaks in15N- and13C-labeled proteins. J Biomol NMR 2(2):203–210. https://doi.org/10.1007/bf01875531

    Article  Google Scholar 

  • Deragon JM (2021) Distribution, organization an evolutionary history of La and LARPs in eukaryotes. RNA Biol 18(2):159–167. https://doi.org/10.1080/15476286.2020.1739930

    Article  Google Scholar 

  • Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K, Florea LD, Kumar R (2013) RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 3:1689. https://doi.org/10.1038/srep01689

    Article  ADS  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49(1):9–15. https://doi.org/10.1007/s10858-010-9461-5

    Article  Google Scholar 

  • Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, Healy D, Hoang HD, Jensen JM, Diao IT, Lussier A, Dajadian C, Padmanabhan N, Wang W, Matta-Camacho E, Hearnden J, Smith EM, Tsukumo Y, Yanagiya A, Morita M, Petroulakis E, Gonzalez JL, Hernandez G, Alain T, Damgaard CK (2015) La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem 290(26):15996–16020. https://doi.org/10.1074/jbc.M114.621730

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang X-P, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang H-Y, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816):459–468. https://doi.org/10.1038/s41586-020-2286-9

    Article  ADS  Google Scholar 

  • Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 1969 96(2):432–440. https://doi.org/10.1016/0022-2364(92)90099-S

    Article  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Ser B 101(1):114–119. https://doi.org/10.1006/jmrb.1993.1019

    Article  Google Scholar 

  • Harris RK, Becker ED, Menezes SMCd, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008). Pure Appl Chem 80(1):59–84. https://doi.org/10.1351/pac200880010059

    Article  Google Scholar 

  • Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500-502. https://doi.org/10.1093/nar/gkh429

    Article  Google Scholar 

  • Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260. https://doi.org/10.1007/s10858-009-9338-7

    Article  Google Scholar 

  • Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia HR, Fujiwara T, Gryk MR, Iwata T, Kojima C, Kurisu G, Maziuk D, Miyanoiri Y, Wedell JR, Wilburn C, Yao H, Yokochi M (2023) Biological magnetic resonance data bank. Nucleic Acids Res 51(D1):D368–D376. https://doi.org/10.1093/nar/gkac1050

    Article  Google Scholar 

  • Hong S, Freeberg MA, Han T, Kamath A, Yao Y, Fukuda T, Suzuki T, Kim JK, Inoki K (2017) LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. Elife 6:e25237. https://doi.org/10.7554/eLife.25237

    Article  Google Scholar 

  • Hopkins TG, Mura M, Al-Ashtal HA, Lahr RM, Abd-Latip N, Sweeney K, Lu H, Weir J, El-Bahrawy M, Steel JH, Ghaem-Maghami S, Aboagye EO, Berman AJ, Blagden SP (2016) The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res 44(3):1227–1246. https://doi.org/10.1093/nar/gkv1515

    Article  Google Scholar 

  • Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322. https://doi.org/10.1126/science.1199498

    Article  ADS  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  ADS  Google Scholar 

  • Kay LE, Xu GY, Yamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson Ser A 109(1):129–133. https://doi.org/10.1006/jmra.1994.1145

    Article  ADS  Google Scholar 

  • Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8(7):533–543. https://doi.org/10.1038/nrg2111

    Article  Google Scholar 

  • Kuspert M, Murakawa Y, Schaffler K, Vanselow JT, Wolf E, Juranek S, Schlosser A, Landthaler M, Fischer U (2015) LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. RNA 21(7):1294–1305. https://doi.org/10.1261/rna.051441.115

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. https://doi.org/10.1093/bioinformatics/btu830

    Article  Google Scholar 

  • LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli Thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118(39):9255–9264. https://doi.org/10.1021/ja960877r

    Article  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169. https://doi.org/10.1016/j.jmr.2007.04.002

    Article  ADS  Google Scholar 

  • Logan TM, Olejniczak ET, Xu RX, Fesik SW (1993) A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J Biomol NMR 3(2):225–231. https://doi.org/10.1007/BF00178264

    Article  Google Scholar 

  • Lyons BA, Montelione GT (1993) An HCCNH triple-resonance experiment using carbon-13 isotropic mixing for correlating backbone amide and side-chain aliphatic resonances in isotopically enriched proteins. J Magn Reson Ser B 101(2):206–209. https://doi.org/10.1006/jmrb.1993.1034

    Article  Google Scholar 

  • Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR (2017) The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. Wires RNA 8(6):e1430. https://doi.org/10.1002/wrna.1430

    Article  Google Scholar 

  • Martino L, Pennell S, Kelly G, Busi B, Brown P, Atkinson RA, Salisbury NJ, Ooi ZH, See KW, Smerdon SJ, Alfano C, Bui TT, Conte MR (2015) Synergic interplay of the La motif, RRM1 and the interdomain linker of LARP6 in the recognition of collagen mRNA expands the RNA binding repertoire of the La module. Nucleic Acids Res 43(1):645–660. https://doi.org/10.1093/nar/gku1287

    Article  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114(27):10974–10975. https://doi.org/10.1021/ja00053a051

    Article  Google Scholar 

  • Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103(3):203–216. https://doi.org/10.1006/jmrb.1994.1032

    Article  Google Scholar 

  • Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H, Bushell M, Willis AE, Curry E, Blagden SP (2015) LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 34(39):5025–5036. https://doi.org/10.1038/onc.2014.428

    Article  Google Scholar 

  • Plissonnier M-L, Cottarel J, Piver E, Kullolli M, Centonze FG, Pitteri S, Farhan H, Meunier J-C, Zoulim F, Parent R (2019) LARP1 binding to hepatitis C virus particles is correlated with intracellular retention of viral infectivity. Virus Res 271:197679. https://doi.org/10.1016/j.virusres.2019.197679

    Article  Google Scholar 

  • Rhodes DR, Yu JJ, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6. https://doi.org/10.1016/s1476-5586(04)80047-2

    Article  Google Scholar 

  • Sanfelice D, Koss H, Bunney TD, Thompson GS, Farrell B, Katan M, Breeze AL (2018) NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 3 in apo state and in complex with inhibitor PD173074. Biomol NMR Assign 12(2):231–235. https://doi.org/10.1007/s12104-018-9814-7

    Article  Google Scholar 

  • Scaturro P, Stukalov A, Haas DA, Cortese M, Draganova K, Płaszczyca A, Bartenschlager R, Götz M, Pichlmair A (2018) An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 561(7722):253–257. https://doi.org/10.1038/s41586-018-0484-5

    Article  ADS  Google Scholar 

  • Schaffler K, Schulz K, Hirmer A, Wiesner J, Grimm M, Sickmann A, Fischer U (2010) A stimulatory role for the La-related protein 4B in translation. RNA 16(8):1488–1499. https://doi.org/10.1261/rna.2146910

    Article  Google Scholar 

  • Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the three-dimensional HNCO experiment. Angew Chem Int Ed 32(10):1489–1491. https://doi.org/10.1002/anie.199314891

    Article  Google Scholar 

  • Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson R, Werner S, Wei Y, Zimmer M, Ade J, Kirschner L, Zielinski S, Dölken L, Lander ES, Caliskan N, Fischer U, Vogel J, Carr SA, Bodem J, Munschauer M (2021) The SARS-CoV-2 RNA–protein interactome in infected human cells. Nat Microbiol 6(3):339–353. https://doi.org/10.1038/s41564-020-00846-z

    Article  Google Scholar 

  • Schulte-Herbruggen T, Sorensen OW (2000) Clean TROSY: compensation for relaxation-induced artifacts. J Magn Reson 144(1):123–128. https://doi.org/10.1006/jmre.2000.2020

    Article  ADS  Google Scholar 

  • Selcuklu SD, Donoghue MT, Rehmet K, de Souza GM, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ, Spillane C (2012) MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 287(35):29516–29528. https://doi.org/10.1074/jbc.M111.335943

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241. https://doi.org/10.1007/s10858-013-9741-y

    Article  Google Scholar 

  • Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55(4):311–321. https://doi.org/10.1007/s10858-013-9715-0

    Article  Google Scholar 

  • Stefanovic L, Longo L, Zhang Y, Stefanovic B (2014) Characterization of binding of LARP6 to the 5’ stem-loop of collagen mRNAs: Implications for synthesis of type I collagen. RNA Biol 11(11):1386–1401. https://doi.org/10.1080/15476286.2014.996467

    Article  Google Scholar 

  • Stefanovic B, Manojlovic Z, Vied C, Badger CD, Stefanovic L (2019) Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. Sci Rep 9:326. https://doi.org/10.1038/s41598-018-36841-y

    Article  ADS  Google Scholar 

  • Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH, Eyo ZW, Ebina H, Takahashi H, Takahashi C, Tan BH, Hishiki T, Ohba K, Matsuyama T, Koyanagi Y, Tan YJ, Sawasaki T, Chu JJ, Vasudevan SG, Sano K, Yamamoto N (2016) Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against dengue virus replication. PLoS Pathog 12(1):e1005357. https://doi.org/10.1371/journal.ppat.1005357

    Article  Google Scholar 

  • Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP (2014a) Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev 28(4):357–371. https://doi.org/10.1101/gad.231407.113

    Article  Google Scholar 

  • Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP (2014b) Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5 ’ TOP mRNA translation. Genes Dev 28(4):357–371. https://doi.org/10.1101/gad.231407.113

    Article  Google Scholar 

  • Vajpai N, Schott AK, Vogtherr M, Breeze AL (2014) NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 1. Biomol NMR Assign 8(1):85–88. https://doi.org/10.1007/s12104-013-9458-6

    Article  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2021) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson Ser B 101(2):201–205. https://doi.org/10.1006/jmrb.1993.1033

    Article  Google Scholar 

  • Xie C, Huang L, Xie S, Xie D, Zhang G, Wang P, Peng L, Gao Z (2013) LARP1 predict the prognosis for early-stage and AFP-normal hepatocellular carcinoma. J Transl Med 11:272. https://doi.org/10.1186/1479-5876-11-272

    Article  Google Scholar 

  • Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ (2011) La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Mol Cell Biol 31(3):542–556. https://doi.org/10.1128/MCB.01162-10

    Article  Google Scholar 

  • Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326. https://doi.org/10.1126/science.1199484

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by NIGMS of the National Institutes of Health under award number R35GM142912. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.S. prepared samples. B.S. and R.S. performed NMR experiments and resonance assignments. B.S. and R.S. wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Robert Silvers.

Ethics declarations

Competing interest

The authors declare that they have no competing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, B.C., Silvers, R. 1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1. Biomol NMR Assign 18, 111–118 (2024). https://doi.org/10.1007/s12104-024-10176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-024-10176-4

Keywords

Navigation