Skip to main content
Log in

Backbone 1H, 13C, and 15N NMR resonance assignments of the Krüppel-like factor 4 activation domain

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Krüppel-like factor 4 (KLF4) is a transcription factor involved in diverse biological processes, including development, cellular differentiation and proliferation, and maintenance of tissue homeostasis. KLF4 has also been associated with disease states, such as cardiovascular disease and several cancers. KLF4 contains an activation domain, repression domain, and a structurally characterized C-terminal zinc finger domain that mediates its binding to DNA. The structurally uncharacterized KLF4 activation domain is critical for transactivation by KLF4 and mediates its binding to the transcriptional coactivator CBP/p300. Here, we report the 1H, 15N, 13CO, 13Cα and 13Cβ NMR chemical shift assignments of KLF41–130, which contains the KLF4 activation domain. Narrow chemical shift dispersion in the 1H dimension of the 1H-15N HSQC spectrum suggests that the KLF41–130 fragment is intrinsically disordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bieker JJ (2001) Kruppel-like Factors: Three Fingers in Many Pies. J Biol Chem  276:34355–34358. doi:10.1074/jbc.R100043200

    Article  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time three-dimensional Triple-resonance pulse scheme to correlate intraresidue 1HN, 15 N, and 13C’ chemical shifts in 15 N-13C-labeled proteins. J Magn Reson 97:213–217

    ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Evans PM, Liu C, 2008. Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim. Biophys. Sin (Shanghai) 40:554–564

    Article  Google Scholar 

  • Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK (2005) Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280:38247–38258. doi:10.1074/jbc.M509378200

    Article  Google Scholar 

  • Foster KW, Frost AR, McKie-Bell P, Lin CY, Engler JA, Grizzle WE, Ruppert JM (2000) Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res 60:6488–6495

    Google Scholar 

  • Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B (1996) A gene for a novel Zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271:31384–31390. doi:10.1074/jbc.271.49.31384

    Article  Google Scholar 

  • Geiman DE, Ton-That H, Johnson JM, Yang VW (2000) Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein–protein interaction. Nucleic Acids Res 28:1106–1113. doi:10.1093/nar/28.5.1106

    Article  Google Scholar 

  • Grzesiek S, Bax A (1992a) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson. doi:10.1016/0022-2364(92)90099-S

  • Grzesiek S, Bax A (1992b) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99(1):201–207. doi:10.1016/0022-2364(92)90169-8

    ADS  Google Scholar 

  • Grzesiek S, Bax A (1992c) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293. doi:10.1021/ja00042a003

    Article  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson 101:114–119

    Article  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514. doi:10.1016/j.jmr.2011.09.004

    ADS  Google Scholar 

  • Liu Y, Olanrewaju YO, Zheng Y, Hashimoto H, Blumenthal RM, Zhang X, Cheng X (2014) Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res 42:4859–4867. doi:10.1093/nar/gku134

    Article  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70. doi:10.1016/j.stem.2007.05.014

    Article  Google Scholar 

  • Marsh J, Singh V, Jia Z, Forman-Kay J (2006) Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi:10.1110/ps.062465306

    Article  Google Scholar 

  • McConnell BB, Yang VW (2010) Mammalian kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381. doi:10.1152/physrev.00058.2009

    Article  Google Scholar 

  • Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103:203–216. doi:10.1006/jmrb.1994.1032

    Article  Google Scholar 

  • Schuetz A, Nana D, Rose C, Zocher G, Milanovic M, Koenigsmann J, Blasig R, Heinemann U, Carstanjen D (2011) The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cell Mol Life Sci 68:3121–3131. doi:10.1007/s00018-010-0618-x

    Article  Google Scholar 

  • Segre JA, Bauer C, Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22:356–360. doi:10.1038/11926

    Article  Google Scholar 

  • Shields JM, Christy RJ, Yang VW (1996) Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 271:20009–20017

    Article  Google Scholar 

  • Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85:551–556. doi:10.1016/j.ygeno.2005.01.005

    Article  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696. doi:10.1002/prot.20449

    Article  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324. doi:10.1038/nature05944

    Article  ADS  Google Scholar 

  • Yet SF, McA’Nulty MM, Folta SC, Yen HW, Yoshizumi M, Hsieh CM, Layne MD, Chin MT, Wang H, Perrella MA, Jain MK, Lee ME (1998) Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 273:1026–1031

    Article  Google Scholar 

  • Yoshida T, Gan Q, Owens GK (2008) Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol 295:C1175–C1182. doi:10.1152/ajpcell.00288.2008

    Article  Google Scholar 

  • Yoshida T, Yamashita M, Hayashi M (2014) Protective effects of Krüppel- like factor 4 against cardiovascular disease. Ann Vasc Med Res 1:1002

    Google Scholar 

  • Yu T, Chen X, Zhang W, Li J, Xu R, Wang TC, Ai W, Liu C, Hotchin NA (2012) Krü ppel-like factor 4 regulates intestinal epithelial cell morphology and polarity. PLoS ONE 7. doi:10.1371/journal.pone.0032492

    Google Scholar 

  • Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH, Biggs JR, Kraft AS, Yang VW (2000) The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275:18391–18398. doi:10.1074/jbc.C000062200

    Article  Google Scholar 

  • Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW (2004) Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23:395–402. doi:10.1038/sj.onc.1207067

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a Natural Science and Engineering Council of Canada discovery grant to SPS. DNL is a recipient of a CIHR Postdoctoral Fellowship and BSC was supported by a Queen’s University Chancellor’s Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven P. Smith or David N. Langelaan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal research information

This work does not involve any studies involving human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conroy, B.S., Weiss, E.R., Smith, S.P. et al. Backbone 1H, 13C, and 15N NMR resonance assignments of the Krüppel-like factor 4 activation domain. Biomol NMR Assign 11, 95–98 (2017). https://doi.org/10.1007/s12104-017-9727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9727-x

Keywords

Navigation