Skip to main content
Log in

Recovering lost magnetization: polarization enhancement in biomolecular NMR

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Experimental sensitivity remains a major drawback for the application of NMR spectroscopy to fragile and low concentrated biomolecular samples. Here we describe an efficient polarization enhancement mechanism in longitudinal-relaxation enhanced fast-pulsing triple-resonance experiments. By recovering undetectable 1H polarization originating from longitudinal relaxation during the pulse sequence, the steady-state 15N polarization becomes enhanced by up to a factor of ~5 with respect to thermal equilibrium yielding significant sensitivity improvements compared to conventional schemes. The benefits of BEST-TROSY experiments at high magnetic field strength are illustrated for various protein applications, but they will be equally useful for other protonated macromolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Brutscher B (2000) Principles and applications of cross-correlated relaxation in biomolecules. Concepts Magn Reson 12(4):207–229

    Article  Google Scholar 

  • Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in H-1-C-13 NMR experiments of RNA. J Am Chem Soc 120(46):11845–11851

    Article  Google Scholar 

  • Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue (3 h)J(NC′) scalar couplings. J Am Chem Soc 121(7):1601–1602

    Article  Google Scholar 

  • Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal relaxation enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  • Kupce E, Freeman R (1994) Wide-band excitation with polychromatic pulses. J Magn Reson A 108(2):268–273

    Article  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169

    Article  ADS  Google Scholar 

  • Lescop E, Kern T, Brutscher B (2010) Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type H-1-N-15 correlation experiments. J Magn Reson 203(1):190–198

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J Am Chem Soc 120(25):6394–6400

    Article  Google Scholar 

  • Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal H-1 relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124(43):12898–12902

    Article  Google Scholar 

  • Riek R (2001) Enhancement of the steady-state magnetization in TROSY experiments. J Biomol NMR 21(2):99–105

    Article  Google Scholar 

  • Schanda P (2009) Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox of fast biomolecular NMR spectroscopy. Prog NMR Spectrosc 55(3):238–265

    Article  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127(22):8014–8015

    Article  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128(28):9042–9043

    Article  Google Scholar 

  • Schulte-Herbrüggen T, Sorensen OW (2000) Clean TROSY: compensation for relaxation-induced artifacts. J Magn Reson 144(1):123–128

    Article  ADS  Google Scholar 

  • Yao LS, Grishaev A, Cornilescu G, Bax A (2010a) Site-specific backbone amide N-15 chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 132(12):4295–4309

    Article  Google Scholar 

  • Yao LS, Grishaev A, Cornilescu G, Bax A (2010b) The impact of hydrogen bonding on amide H-1 chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. J Am Chem Soc 132(31):10866–10875

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs J. Boisbouvier, S. Hediger, and M. Plevin for stimulating discussion and critical reading of this manuscript, and I. Ayala for expert protein production. This work was supported by the Commissariat à l’Energie Atomique, the Centre National de la Recherche Scientifique, the University of Grenoble, and the French research agency (grant ANR 08-BLAN-210) and the European Commission (FP7-I3 BIO-NMR contract No. 261863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Brutscher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favier, A., Brutscher, B. Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49, 9–15 (2011). https://doi.org/10.1007/s10858-010-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9461-5

Keywords

Navigation