Skip to main content

Advertisement

Log in

Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESCC:

Esophageal squamous cell carcinoma

EC:

Esophageal cancer

EAC:

Esophageal adenocarcinoma

EMT:

Epithelial-mesenchymal transition

OS:

Overall survival

PIK3CA:

P110X of 3-phosphatilinositol kinase L3K

PKMYT1:

Protein kinase, membrane-associated tyrosine/threonine

MLL2:

Mixed-lineage leukemia 2

FLVCR1:

Feline leukemia virus subgroup C receptor 1

TGIF1:

TGFB-induced factor homeobox 1

TAF1L:

TATA-box binding protein associated factor 1

EP300:

E1A Binding Protein P300

GLI1:

Glioma-associated oncogene homolog 1

YAP1:

YES-related protein 1

SOX2:

Sex-determining region Y-box 2

SOX9:

Sex-determining region Y-box 9

FAM135B:

Recombinant proteins of the hominid family with sequence similarity 135, member B

PCARP:

Poplar ataxia with retinitis pigmentosa

FAM84B:

Family with sequence similarity 84 member B

GASC1:

Gene amplified in squamous cell carcinoma 1

MAGE-A11:

Melanoma Antigens Genes (MAGE)family member 11

ALKBH5:

Human ALKB homolog H5

MTOR:

Mechanistic target of rapamycin kinase

GRN:

Granulin precursor

TFCP2:

Transcription factor CP2

ZEB1:

Zinc finger E-box binding homeobox 1

HAT:

Histone acetyl transferase

HDACs:

Histone deacetylases

APOBEC:

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like

CSCs:

Cancer stem cells

CDK1:

Cyclin-dependent kinase 1

TGIF1:

TGFB-induced factor homeobox 1

TRAIL:

Tumor Necrosis factor-related apoptosis-inducing ligand

H3K4:

Histone 3 lysine 4

DSBH:

Double-stranded β-helix fold

DDX3:

DEAD- (ASP-Glu-Ala-asp -) Box 3

METTL3:

Methyltransferase-like 3

HNRNPC:

Heterogeneous nuclear ribonucleoprotein binding protein

HIF-1:

Hypoxia-inducible factor 1

RNF168:

RING finger protein 168

KIF4A:

Kinesin superfamily member 4A

EIF3H:

Eukaryotic translation initiation factor 3H

MMPs:

Matrix metalloproteinases

TRIB2:

Tribble2

GLS2:

Glutaminase 2

CCRT:

Concurrent chemoradiotherapy

NF:

Normal fibroblasts

PARK2:

Parkin

CSE1L:

Chromosome segregation 1–like

ADAR1:

Adenosine deaminase RNA specific

ADAM29:

A disintegrin and metalloprotease domain 29

ErbB:

Epidermal growth factor

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509(7498):91–5. https://doi.org/10.1038/nature13176.

    Article  CAS  PubMed  Google Scholar 

  3. Tramontano AC, Chen Y, Watson TR, Eckel A, Hur C, Kong CY. Esophageal cancer treatment costs by phase of care and treatment modality, 2000–2013. Cancer Med. 2019;8(11):5158–72. https://doi.org/10.1002/cam4.2451.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, et al. Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology. 2017;153(1):166–77. https://doi.org/10.1053/j.gastro.2017.03.033.

    Article  CAS  PubMed  Google Scholar 

  5. Lima SC, Hernandez-Vargas H, Simao T, Durand G, Kruel CD, Le Calvez-Kelm F, et al. Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics. 2011;6(10):1217–27. https://doi.org/10.4161/epi.6.10.17199.

    Article  CAS  PubMed  Google Scholar 

  6. O’Reilly S, Forastiere AA. Is surgery necessary with multimodality treatment of oesophageal cancer. Ann Oncol. 1995;6(6):519–21. https://doi.org/10.1093/oxfordjournals.annonc.a059237.

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Yang J, Lin X, Lin L, Jiang W, Xie C. Survival outcomes for patients with four treatments in stages I-III esophageal squamous cell carcinoma: a SEER analysis. Transl Cancer Res. 2021;10(5):2144–52. https://doi.org/10.21037/tcr-20-2995.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009–15. https://doi.org/10.21873/anticanres.14622.

    Article  CAS  PubMed  Google Scholar 

  9. Balmain A, Brown K. Oncogene activation in chemical carcinogenesis. Amsterdam: Elsevier; 1988. p. 147–82.

    Google Scholar 

  10. Gebhart E, Liehr T. Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol. 2000;16(2):383–99. https://doi.org/10.3892/ijo.16.2.383.

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Shan L, Zhang S, Ying J, Xue L, Yuan Y, et al. PIK3CA gene mutations and overexpression: implications for prognostic biomarker and therapeutic target in Chinese esophageal squamous cell carcinoma. PLoS ONE. 2014;9(7):e103021. https://doi.org/10.1371/journal.pone.0103021.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Munari FF, Cruvinel-Carloni A, Lacerda CF, de Oliveira ATT, Scapulatempo-Neto C, da Silva SRM, et al. PIK3CA mutations are frequent in esophageal squamous cell carcinoma associated with chagasic megaesophagus and are associated with a worse patient outcome. Infect Agent Cancer. 2018;13:43. https://doi.org/10.1186/s13027-018-0216-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu Y, Lin X, Kapoor A, Chow MJ, Jiang Y, Zhao K, et al. The oncogenic potential of the centromeric border protein FAM84B of the 8q24.21 gene desert. Genes. 2020. https://doi.org/10.3390/genes11030312.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang Q, Zhao X, Zhang C, Wang W, Li F, Liu D, et al. Overexpressed PKMYT1 promotes tumor progression and associates with poor survival in esophageal squamous cell carcinoma. Cancer Manag Res. 2019;11:7813–24. https://doi.org/10.2147/CMAR.S214243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong D, Zhang W, Xiao W, Wu Q, Cao Y, Gao X, et al. A GRN autocrine-dependent FAM135B/AKT/mTOR feedforward loop promotes esophageal squamous cell carcinoma progression. Cancer Res. 2021;81(4):910–22. https://doi.org/10.1158/0008-5472.CAN-20-0912.

    Article  CAS  PubMed  Google Scholar 

  16. Peng C, Song Y, Chen W, Wang X, Liu X, Wang F, et al. FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy. Int J Oncol. 2018;52(5):1559–68. https://doi.org/10.3892/ijo.2018.4312.

    Article  CAS  PubMed  Google Scholar 

  17. Kong L, Yu Y, Guan H, Jiang L, Sun F, Li X, et al. TGIF1 plays a carcinogenic role in esophageal squamous cell carcinoma through the Wnt/β-catenin and Akt/mTOR signaling pathways. Int J Mol Med. 2021. https://doi.org/10.3892/ijmm.2021.4910.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Qin G, Zhang C, Yang H, Liu J, Hu H, et al. TRAIL promotes epithelial-to-mesenchymal transition by inducing PD-L1 expression in esophageal squamous cell carcinomas. J Exp Clin Cancer Res. 2021;40(1):209. https://doi.org/10.1186/s13046-021-01972-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Ge X, Wang H, Huang J, Song Q, Xu C, et al. SOX2 amplification and chromosome 3 gain significantly impact prognosis in esophageal squamous cell carcinoma. Ann Transl Med. 2021;9(4):321. https://doi.org/10.21037/atm-20-1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bi Y, Kong P, Zhang L, Cui H, Xu X, Chang F, et al. EP300 as an oncogene correlates with poor prognosis in esophageal squamous carcinoma. J Cancer. 2019;10(22):5413–26. https://doi.org/10.7150/jca.34261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abudureheman A, Ainiwaer J, Hou Z, Niyaz M, Turghun A, Hasim A, et al. High MLL2 expression predicts poor prognosis and promotes tumor progression by inducing EMT in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2018;144(6):1025–35. https://doi.org/10.1007/s00432-018-2625-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. https://doi.org/10.1038/npp.2012.112.

    Article  CAS  PubMed  Google Scholar 

  23. Teng H, Xue M, Liang J, Wang X, Wang L, Wei W, et al. Inter- and intratumor DNA methylation heterogeneity associated with lymph node metastasis and prognosis of esophageal squamous cell carcinoma. Theranostics. 2020;10(7):3035–48. https://doi.org/10.7150/thno.42559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55. https://doi.org/10.1007/978-981-15-3449-2_1.

    Article  CAS  PubMed  Google Scholar 

  25. Lin L, Cheng X, Yin D. Aberrant DNA methylation in esophageal squamous cell carcinoma: biological and clinical implications. Front Oncol. 2020;10:549850. https://doi.org/10.3389/fonc.2020.549850.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303. https://doi.org/10.1038/nature10351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43(9):830–7. https://doi.org/10.1038/ng.892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4. https://doi.org/10.1038/nature11017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Li Q, Lian J, Chu Y, Fang K, Xu A, et al. MLL2 promotes cancer cell lymph node metastasis by interacting with RelA and facilitating STC1 transcription. Cell Signal. 2020;65:109457. https://doi.org/10.1016/j.cellsig.2019.109457.

    Article  CAS  PubMed  Google Scholar 

  30. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7. https://doi.org/10.1126/science.1840703.

    Article  PubMed  Google Scholar 

  31. Sang M, Wang L, Ding C, Zhou X, Wang B, Wang L, et al. Melanoma-associated antigen genes—an update. Cancer Lett. 2011;302(2):85–90. https://doi.org/10.1016/j.canlet.2010.10.021.

    Article  CAS  PubMed  Google Scholar 

  32. Sang M, Lian Y, Zhou X, Shan B. MAGE-A family: attractive targets for cancer immunotherapy. Vaccine. 2011;29(47):8496–500. https://doi.org/10.1016/j.vaccine.2011.09.014.

    Article  CAS  PubMed  Google Scholar 

  33. Gu L, Sang M, Li J, Liu F, Wu Y, Liu S, et al. Demethylation-mediated upregulation of melanoma-associated antigen-A11 correlates with malignant progression of esophageal squamous cell carcinoma. Dig Liver Dis. 2019;51(10):1475–82. https://doi.org/10.1016/j.dld.2019.04.018.

    Article  CAS  PubMed  Google Scholar 

  34. Liu S, Liu F, Huang W, Gu L, Meng L, Ju Y, et al. MAGE-A11 is activated through TFCP2/ZEB1 binding sites de-methylation as well as histone modification and facilitates ESCC tumor growth. Oncotarget. 2018;9(3):3365–78. https://doi.org/10.18632/oncotarget.22973.

    Article  PubMed  Google Scholar 

  35. Sang M, Gu L, Liu F, Lian Y, Yin D, Fan X, et al. Prognostic significance of MAGE-A11 in esophageal squamous cell carcinoma and identification of related genes based on DNA microarray. Arch Med Res. 2016;47(3):151–61. https://doi.org/10.1016/j.arcmed.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  36. Boccaletto P, Baginski B. MODOMICS: an operational guide to the use of the RNA modification pathways database. Methods Mol Biol. 2021;2284:481–505. https://doi.org/10.1007/978-1-0716-1307-8_26.

    Article  CAS  PubMed  Google Scholar 

  37. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18(1):103. https://doi.org/10.1186/s12943-019-1033-z.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19(1):88. https://doi.org/10.1186/s12943-020-01204-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vagbo CB, et al. Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell. 2021;184(12):3125-3142 e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149(7):1635–46. https://doi.org/10.1016/j.cell.2012.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kataoka H, Sekiguchi M. Molecular cloning and characterization of the alkB gene of Escherichia coli. Mol Gen Genet. 1985;198(2):263–9. https://doi.org/10.1007/bf00383004.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Yuan Q, Xie L. The AlkB family of Fe (II)/alpha-ketoglutarate-dependent dioxygenases modulates embryogenesis through epigenetic regulation. Curr Stem Cell Res Ther. 2018. https://doi.org/10.2174/1574888x12666171027105532.

    Article  PubMed  Google Scholar 

  43. Kurowski MA, Bhagwat AS, Papaj G, Bujnicki JM. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics. 2003;4(1):48. https://doi.org/10.1186/1471-2164-4-48.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xue J, Xiao P, Yu X, Zhang X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 2021;34(2):502–14. https://doi.org/10.1007/s13577-020-00458-z.

    Article  CAS  PubMed  Google Scholar 

  45. Liu S, Huang M, Chen Z, Chen J, Chao Q, Yin X, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389(1):111894. https://doi.org/10.1016/j.yexcr.2020.111894.

    Article  CAS  PubMed  Google Scholar 

  46. Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, et al. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2021;40(1):294. https://doi.org/10.1186/s13046-021-02096-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao R, Ye M, Liu B, Wei M, Ma D, Dong K. m6A Modification: a double-edged sword in tumor development. Front Oncol. 2021;11:679367. https://doi.org/10.3389/fonc.2021.679367.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han H, Yang C, Zhang S, Cheng M, Guo S, Zhu Y, et al. METTL3-mediated m(6)A mRNA modification promotes esophageal cancer initiation and progression via notch signaling pathway. Mol Ther Nucleic Acids. 2021;26:333–46. https://doi.org/10.1016/j.omtn.2021.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen X, Huang L, Yang T, Xu J, Zhang C, Deng Z, et al. METTL3 promotes esophageal squamous cell carcinoma metastasis through enhancing GLS2 expression. Front Oncol. 2021;11:667451. https://doi.org/10.3389/fonc.2021.667451.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu Z, Wu K, Gu S, Wang W, Xie S, Lu T, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11(9):e545. https://doi.org/10.1002/ctm2.545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;12:5385–94. https://doi.org/10.2147/CMAR.S254870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Lu N, Wang L, Wang Y, Li M, Zhou Y, et al. Recent advances of m(6)A methylation modification in esophageal squamous cell carcinoma. Cancer Cell Int. 2021;21(1):421. https://doi.org/10.1186/s12935-021-02132-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2(10):a003236. https://doi.org/10.1101/cshperspect.a003236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. https://doi.org/10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aoki M, Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–89. https://doi.org/10.1007/82_2017_6.

    Article  PubMed  Google Scholar 

  56. Wang L, Zhang Z, Yu X, Li Q, Wang Q, Chang A, et al. SOX9/miR-203a axis drives PI3K/AKT signaling to promote esophageal cancer progression. Cancer Lett. 2020;468:14–26. https://doi.org/10.1016/j.canlet.2019.10.004.

    Article  CAS  PubMed  Google Scholar 

  57. Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci. 2013;104(7):810–6. https://doi.org/10.1111/cas.12155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L. Progranulin and its biological effects in cancer. Med Oncol. 2017;34(12):194. https://doi.org/10.1007/s12032-017-1054-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang D, Li R, Wang H, Wang J, Han L, Pan L, et al. Clinical implications of progranulin in gastric cancer and its regulation via a positive feedback loop involving AKT and ERK signaling pathways. Mol Med Rep. 2017;16(6):9685–91. https://doi.org/10.3892/mmr.2017.7796.

    Article  CAS  PubMed  Google Scholar 

  60. Feng T, Zheng L, Liu F, Xu X, Mao S, Wang X, et al. Growth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway. Oncotarget. 2016;7(36):58381–95. https://doi.org/10.18632/oncotarget.11126.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang C, Cheng L, Song S, Wu S, Sun G. Gli1 interacts with YAP1 to promote tumorigenesis in esophageal squamous cell carcinoma. J Cell Physiol. 2020;235(11):8224–35. https://doi.org/10.1002/jcp.29477.

    Article  CAS  PubMed  Google Scholar 

  62. Rizvi S, Demars CJ, Comba A, Gainullin VG, Rizvi Z, Almada LL, et al. Combinatorial chemoprevention reveals a novel smoothened-independent role of GLI1 in esophageal carcinogenesis. Cancer Res. 2010;70(17):6787–96. https://doi.org/10.1158/0008-5472.Can-10-0197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei L, Xu Z. Cross-signaling among phosphinositide-3 kinase, mitogen-activated protein kinase and sonic hedgehog pathways exists in esophageal cancer. Int J Cancer. 2011;129(2):275–84. https://doi.org/10.1002/ijc.25673.

    Article  CAS  PubMed  Google Scholar 

  64. Yang Z, Cui Y, Ni W, Kim S, Xuan Y. Gli1, a potential regulator of esophageal cancer stem cell, is identified as an independent adverse prognostic factor in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2017;143(2):243–54. https://doi.org/10.1007/s00432-016-2273-6.

    Article  CAS  PubMed  Google Scholar 

  65. Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. The role of Hippo-YAP signaling in squamous cell carcinomas. Cancer Sci. 2021;112(1):51–60. https://doi.org/10.1111/cas.14725.

    Article  CAS  PubMed  Google Scholar 

  66. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307. https://doi.org/10.1038/s41392-021-00701-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koni M, Pinnaro V, Brizzi MF. The Wnt signalling pathway: a tailored target in cancer. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207697.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lv Z, Liu RD, Chen XQ, Wang B, Li LF, Guo YS, et al. HIF1alpha promotes the stemness of oesophageal squamous cell carcinoma by activating the Wnt/betacatenin pathway. Oncol Rep. 2019;42(2):726–34. https://doi.org/10.3892/or.2019.7203.

    Article  CAS  PubMed  Google Scholar 

  70. Gou Y, Jin D, He S, Han S, Bai Q. RNF168 is highly expressed in esophageal squamous cell carcinoma and contributes to the malignant behaviors in association with the Wnt/β-catenin signaling pathway. Aging. 2021;13(4):5403–14. https://doi.org/10.18632/aging.202471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang Y, Yang P, Zhu Y, Su Y. LncRNA TUG1 contributes to ESCC progression via regulating miR-148a-3p/MCL-1/Wnt/β-catenin axis in vitro. Thorac Cancer. 2020;11(1):82–94. https://doi.org/10.1111/1759-7714.13236.

    Article  CAS  PubMed  Google Scholar 

  72. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028.

    Article  CAS  PubMed  Google Scholar 

  73. Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, et al. Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett. 2012;325(1):42–53. https://doi.org/10.1016/j.canlet.2012.05.024.

    Article  CAS  PubMed  Google Scholar 

  74. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110. https://doi.org/10.1038/nrc3447.

    Article  CAS  PubMed  Google Scholar 

  75. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488–94. https://doi.org/10.1038/ncb2976.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020;468:72–81. https://doi.org/10.1016/j.canlet.2019.10.013.

    Article  CAS  PubMed  Google Scholar 

  77. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26. https://doi.org/10.1016/j.tcb.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Yang HX, Luo RZ, Zhang Y, Li M, Wang X, et al. High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg. 2011;91(5):1531–8. https://doi.org/10.1016/j.athoracsur.2010.12.012.

    Article  PubMed  Google Scholar 

  79. Razzaque MS, Atfi A. TGIF function in oncogenic Wnt signaling. Biochim Biophys Acta. 2016;1865(2):101–4. https://doi.org/10.1016/j.bbcan.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang MZ, Ferrigno O, Wang Z, Ohnishi M, Prunier C, Levy L, et al. TGIF governs a feed-forward network that empowers Wnt signaling to drive mammary tumorigenesis. Cancer Cell. 2015;27(4):547–60. https://doi.org/10.1016/j.ccell.2015.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang L, Liu G, Bolor-Erdene E, Li Q, Mei Y, Zhou L. Identification of KIF4A as a prognostic biomarker for esophageal squamous cell carcinoma. Aging. 2021;13(21):24050–70. https://doi.org/10.18632/aging.203585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo X, Zhu R, Luo A, Zhou H, Ding F, Yang H, et al. EIF3H promotes aggressiveness of esophageal squamous cell carcinoma by modulating snail stability. J Exp Clin Cancer Res. 2020;39(1):175. https://doi.org/10.1186/s13046-020-01678-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604. https://doi.org/10.1146/annurev-biochem-013118-111829.

    Article  CAS  PubMed  Google Scholar 

  84. Sun X, Chen P, Chen X, Yang W, Chen X, Zhou W, et al. KIF4A enhanced cell proliferation and migration via Hippo signaling and predicted a poor prognosis in esophageal squamous cell carcinoma. Thorac Cancer. 2021;12(4):512–24. https://doi.org/10.1111/1759-7714.13787.

    Article  CAS  PubMed  Google Scholar 

  85. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al. Regulation of hippo/YAP signaling and esophageal squamous carcinoma progression by an E3 ubiquitin ligase PARK2. Theranostics. 2020;10(21):9443–57. https://doi.org/10.7150/thno.46078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pang D, Wang W, Zhou X, Lu K, Zhang J, Chen Z, et al. RACO-1 modulates hippo signalling in oesophageal squamous cell carcinoma. J Cell Mol Med. 2020;24(20):11912–21. https://doi.org/10.1111/jcmm.15811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang J, Wang JL, Zhang CY, Ma YF, Zhao R, Wang YY. The prognostic role of FZD6 in esophageal squamous cell carcinoma patients. Clin Transl Oncol. 2020;22(7):1172–9. https://doi.org/10.1007/s12094-019-02243-3.

    Article  CAS  PubMed  Google Scholar 

  88. Jia J, Li H, Chu J, Sheng J, Wang C, Jia Z, et al. LncRNA FAM83A-AS1 promotes ESCC progression by regulating miR-214/CDC25B axis. J Cancer. 2021;12(4):1200–11. https://doi.org/10.7150/jca.54007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang H, Wang Y, Zhang W, Wu Q, Fan J, Zhan Q. BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma. Cancer Commun. 2021;41(3):240–57. https://doi.org/10.1002/cac2.12127.

    Article  Google Scholar 

  90. Zhao Z, Yang S, Zhou A, Li X, Fang R, Zhang S, et al. Small extracellular vesicles in the development, diagnosis, and possible therapeutic application of esophageal squamous cell carcinoma, front. Oncol. 2021;11: 732702. https://doi.org/10.3389/fonc.2021.732702.

    Article  Google Scholar 

  91. Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, et al. Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 2020;18:1–13. https://doi.org/10.1016/j.omto.2020.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi S, Huang X, Ma X, Zhu X, Zhang Q. Research of the mechanism on miRNA193 in exosomes promotes cisplatin resistance in esophageal cancer cells. PLoS ONE. 2020;15(5):e0225290. https://doi.org/10.1371/journal.pone.0225290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang YC, Liu GJ, Yuan DF, Li CQ, Xue M, Chen LJ. Influence of exosome-derived miR-21on chemotherapy resistance of esophageal cancer. Eur Rev Med Pharmacol Sci. 2019;23(4):1513–9. https://doi.org/10.26355/eurrev_201902_17109.

    Article  PubMed  Google Scholar 

  94. Liu T, Li P, Li J, Qi Q, Sun Z, Shi S, et al. Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Molecular Therapy - Oncolytics. 2021;23:163–80. https://doi.org/10.1016/j.omto.2021.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goto M, Liu M. Chemokines and their receptors as biomarkers in esophageal cancer. Esophagus. 2020;17(2):113–21. https://doi.org/10.1007/s10388-019-00706-8.

    Article  PubMed  Google Scholar 

  96. Inoue S, Yoshida T, Nishino T, Goto M, Aoyama M, Kawakita N, et al. Biomarkers predicting the response to chemotherapy and the prognosis in patients with esophageal squamous cell carcinoma. Gen Thorac Cardiovasc Surg. 2021;69(3):525–33. https://doi.org/10.1007/s11748-021-01586-5.

    Article  PubMed  Google Scholar 

  97. Murugan AK, Munirajan AK, Tsuchida N. Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett. 2013;338(2):193–203. https://doi.org/10.1016/j.canlet.2013.04.005.

    Article  CAS  PubMed  Google Scholar 

  98. Suzuki H, Wang L, Shan L, Zhang S, Ying J, Xue L, et al. PIK3CA gene mutations and overexpression: implications for prognostic biomarker and therapeutic target in chinese esophageal squamous cell carcinoma. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0103021.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zheng S, Yang C, Lu M, Liu Q, Liu T, Dai F, et al. PIK3CA promotes proliferation and motility but is unassociated with lymph node metastasis or prognosis in esophageal squamous cell carcinoma. Hum Pathol. 2016;53:121–9. https://doi.org/10.1016/j.humpath.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  100. Chen P, Zhang Z, Chen X. Overexpression of PKMYT1 facilitates tumor development and is correlated with poor prognosis in clear cell renal cell carcinoma. Med Sci Monit. 2020;26:e926755. https://doi.org/10.12659/msm.926755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Asquith CRM, Laitinen T, East MP. PKMYT1: a forgotten member of the WEE1 family. Nat Rev Drug Discov. 2020;19(3):157. https://doi.org/10.1038/d41573-019-00202-9.

    Article  CAS  PubMed  Google Scholar 

  102. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178(2):330-345.e22. https://doi.org/10.1016/j.cell.2019.06.005.

    Article  CAS  PubMed  Google Scholar 

  103. Sohoni S, Ghosh P, Wang T, Kalainayakan SP, Vidal C, Dey S, et al. Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 2019;79(10):2511–25. https://doi.org/10.1158/0008-5472.Can-18-2156.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou S, Zhang M, Zhou C, Meng Y, Yang H, Ye W. FLVCR1 predicts poor prognosis and promotes malignant phenotype in esophageal squamous cell carcinoma via upregulating CSE1L. Front Oncol. 2021;11:660955. https://doi.org/10.3389/fonc.2021.660955.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hsu FM, Cheng JC, Chang YL, Lee JM, Koong AC, Chuang EY. Circulating mRNA Profiling in esophageal squamous cell carcinoma identifies FAM84B As A biomarker in predicting pathological response to neoadjuvant chemoradiation. Sci Rep. 2015;5:10291. https://doi.org/10.1038/srep10291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008;100(13):962–6. https://doi.org/10.1093/jnci/djn190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang XP, Rong TH, Wang JY, Tang YQ, Li BJ, Xu DR, et al. Negative implication of C-MYC as an amplification target in esophageal cancer. Cancer Genet Cytogenet. 2006;165(1):20–4. https://doi.org/10.1016/j.cancergencyto.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  108. Cheng C, Cui H, Zhang L, Jia Z, Song B, Wang F, et al. Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. Gigascience. 2016;5:1. https://doi.org/10.1186/s13742-015-0107-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, et al. MicroRNA-155 acts as a diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Artif Cells Nanomed Biotechnol. 2020;48(1):977–82. https://doi.org/10.1080/21691401.2020.1773479.

    Article  CAS  PubMed  Google Scholar 

  110. Shiromoto Y, Sakurai M, Minakuchi M, Ariyoshi K, Nishikura K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat Commun. 2021;12(1):1654. https://doi.org/10.1038/s41467-021-21921-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qiao JJ, Chan TH, Qin YR, Chen L. ADAR1: a promising new biomarker for esophageal squamous cell carcinoma? Expert Rev Anticancer Ther. 2014;14(8):865–8. https://doi.org/10.1586/14737140.2014.928595.

    Article  CAS  PubMed  Google Scholar 

  112. Wang T, Lv X, Jiang S, Han S, Wang Y. Expression of ADAM29 and FAM135B in the pathological evolution from normal esophageal epithelium to esophageal cancer: their differences and clinical significance. Oncol Lett. 2020;19(3):1727–34. https://doi.org/10.3892/ol.2020.11272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu YF, Yu JR, Yang Z, Zhu GX, Gao P, Wang H, et al. Promoter hypomethylation mediated upregulation of MicroRNA-10b-3p targets FOXO3 to promote the progression of esophageal squamous cell carcinoma (ESCC). J Exp Clin Cancer Res. 2018;37(1):301. https://doi.org/10.1186/s13046-018-0966-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hirano H, Kato K. Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and immunotherapy. Jpn J Clin Oncol. 2019;49(5):412–20. https://doi.org/10.1093/jjco/hyz034.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Project of the Health Commission of Hunan Province (202201043124), the Innovation Platform Open Fund Project of the Department of Education of Hunan Province (20K110). We thank Prof. Qian Tao of the Department of Clinical Oncology, Chinese University of Hong Kong, for the comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XZ and JX designed the project. SX wrote the paper. SX draw the figure of the article. GH, WZ, TF, JZ and YL, XL also read and agree to release versions of the manuscript.

Corresponding authors

Correspondence to Jiliang Xia or Xi Zeng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Huang, G., Zeng, W. et al. Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 25, 578–591 (2023). https://doi.org/10.1007/s12094-022-02981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02981-x

Keywords

Navigation