Skip to main content

Advertisement

Log in

The prognostic role of FZD6 in esophageal squamous cell carcinoma patients

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is a kind of cancer with heterogeneous biological characteristics, which is affected by a complex network of gene interactions. Identification of molecular biomarkers paves the way for individualized therapy based on gene expression profiles, which can overcome the heterogeneity of ESCC.

Methods

In this study, GSE20347, GSE23400 and GSE45670 datasets were retrieved from Gene Expression Omnibus (GEO) database, and the overlapping differentially expressed genes (DEGs) in three datasets were screened. Then the overlapping DEGs function was annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment analysis. The prognostic value of the top five KEGG pathway-related genes were further validated in The Cancer Genome Atlas (TCGA) database. After extensive statistical analysis, four genes (CDC25B, CXCL8, FZD6 and MCM4) were identified as potential prognostic markers. Among the four candidate genes, the prognostic value of FZD6 in ESCC patients has not been evaluated. Therefore, we finally used immunohistochemistry method to evaluate the effect of FZD6 on the prognosis of patients with ESCC. Additionally, we detected the expression level of FZD6 in ESCC cell line and normal esophageal epithelial cell line, and observed the cell viability of ESCC cell line after FZD6 knockdown.

Results

The results showed that the overexpression of FZD6 predicted poor overall survival (OS) (P = 0.005) and progression-free survival (PFS) (P = 0.004) in ESCC patients. COX regression analysis showed that N stage (P = 0.026) and FZD6 expression level (P = 0.001) were independent prognostic factors of OS for ESCC patients. Furthermore, compared with normal esophageal epithelial cell line, the up-regulation of FZD6 was detected in ESCC cell line. Knockdown of FZD6 could significantly inhibit the proliferation of ESCC cells (P < 0.001).

Conclusion

CDC25B, CXCL8, FZD6 and MCM4 were screened as candidate genes for prognosis assessment of patients with ESCC. The prognostic role of FZD6 in ESCC patients was confirmed in current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390(10110):2383–96.

    Article  Google Scholar 

  3. Herskovic A, Russell W, Liptay M, Fidler MJ, Al-Sarraf M. Esophageal carcinoma advances in treatment results for locally advanced disease: review. Ann Oncol. 2012;23(5):1095–103.

    Article  CAS  Google Scholar 

  4. Paulson TG. Studying cancer evolution in Barrett's esophagus and esophageal adenocarcinoma. Adv Exp Med Biol. 2016;908:213–36.

    Article  Google Scholar 

  5. Tochigi T, Shuto K, Kono T, Ohira G, Tohma T, Gunji H, et al. Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Dig Surg. 2017;34(3):186–91.

    Article  CAS  Google Scholar 

  6. Lin DC, Wang MR, Koeffler HP. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 2018;154(2):374–89.

    Article  Google Scholar 

  7. Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T, et al. Gene expression profiling of esophageal cancer: comparative analysis of Barrett's esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer. 2007;120(9):1914–21.

    Article  CAS  Google Scholar 

  8. Tamoto E, Tada M, Murakawa K, Takada M, Shindo G, Teramoto K, et al. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin Cancer Res. 2004;10(11):3629–38.

    Article  CAS  Google Scholar 

  9. He Y, Liu J, Zhao Z, Zhao H. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. Dis Esophagus. 2017;30(5):1–8.

    Article  CAS  Google Scholar 

  10. Harada K, Mizrak Kaya D, Shimodaira Y, Song S, Baba H, Ajani JA. Translating genomic profiling to gastrointestinal cancer treatment. Future Oncol. 2017;13(10):919–34.

    Article  CAS  Google Scholar 

  11. Hu N, Clifford RJ, Yang HH, Wang C, Goldstein AM, Ding T, et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma. BMC Genom. 2010;11:576.

    Article  Google Scholar 

  12. Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 2011;17(9):2955–66.

    Article  CAS  Google Scholar 

  13. Wen J, Yang H, Liu MZ, Luo KJ, Liu H, Hu Y, et al. Gene expression analysis of pretreatment biopsies predicts the pathological response of esophageal squamous cell carcinomas to neo-chemoradiotherapy. Ann Oncol. 2014;25(9):1769–74.

    Article  CAS  Google Scholar 

  14. Feng Y, Song LB, Guo BH, Liao WT, Li MZ, Liu WL, et al. Expression and significance of Bmi-1 in breast cancer. Ai Zheng. 2007;26(2):154–7.

    CAS  PubMed  Google Scholar 

  15. Shou JZ, Hu N, Takikita M, Roth MJ, Johnson LL, Giffen C, et al. Overexpression of CDC25B and LAMC2 mRNA and protein in esophageal squamous cell carcinomas and premalignant lesions in subjects from a high-risk population in China. Cancer Epidemiol Biomark Prev. 2008;17(6):1424–35.

    Article  CAS  Google Scholar 

  16. Hosono M, Koma YI, Takase N, Urakawa N, Higashino N, Suemune K, et al. CXCL8 derived from tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression by promoting migration and invasion of cancer cells. Oncotarget. 2017;8(62):106071–88.

    Article  Google Scholar 

  17. Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R, et al. Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery. 2013;154(3):512–20.

    Article  Google Scholar 

  18. Huang XP, Rong TH, Wu QL, Fu JH, Yang H, Zhao JM, et al. MCM4 expression in esophageal cancer from southern China and its clinical significance. J Cancer Res Clin Oncol. 2005;131(10):677–82.

    Article  CAS  Google Scholar 

  19. Yamashita S, Kishino T, Takahashi T, Shimazu T, Charvat H, Kakugawa Y, et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci USA. 2018;115(6):1328–33.

    Article  CAS  Google Scholar 

  20. Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun. 1998;243(2):622–7.

    Article  CAS  Google Scholar 

  21. Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development. 2004;131(21):5327–39.

    Article  CAS  Google Scholar 

  22. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science. 2003;302(5652):1984–8.

    Article  CAS  Google Scholar 

  23. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    Article  CAS  Google Scholar 

  24. Krutzfeldt J, Rosch N, Hausser J, Manoharan M, Zavolan M, Stoffel M. MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1alpha) in adult liver and controls expression of frizzled-6. Hepatology. 2012;55(1):98–107.

    Article  Google Scholar 

  25. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241(3):350–61.

    Article  CAS  Google Scholar 

  26. Kim BK, Yoo HI, Kim I, Park J, Kim YS. FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Rep. 2015;48(6):360–6.

    Article  CAS  Google Scholar 

  27. Wu QL, Zierold C, Ranheim EA. Dysregulation of Frizzled 6 is a critical component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood. 2009;113(13):3031–9.

    Article  CAS  Google Scholar 

  28. Han K, Lang T, Zhang Z, Zhang Y, Sun Y, Shen Z, et al. Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci Rep. 2018;8(1):8537.

    Article  Google Scholar 

  29. Huang T, Alvarez AA, Pangeni RP, Horbinski CM, Lu S, Kim SH, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885.

    Article  CAS  Google Scholar 

  30. Yan J, Liu T, Zhou X, Dang Y, Yin C, Zhang G. FZD6, targeted by miR-21, represses gastric cancer cell proliferation and migration via activating non-canonical wnt pathway. Am J Transl Res. 2016;8(5):2354–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cantilena S, Pastorino F, Pezzolo A, Chayka O, Pistoia V, Ponzoni M, et al. Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas. Oncotarget. 2011;2(12):976–83.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81502094) and First-Class Discipline Construction Founded Project of NingXia Medical University and the School of Clinical Medicine (NXYLXK2017A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-Y. Wang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

The study was reviewed and approved by the Ethics Committee of the General Hospital of Ningxia Medical University. All patients provided written informed consent, and the study was conducted in accordance with the Declaration of Helsinki.

Informed consent

Informed consent is not required for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, JL., Zhang, CY. et al. The prognostic role of FZD6 in esophageal squamous cell carcinoma patients. Clin Transl Oncol 22, 1172–1179 (2020). https://doi.org/10.1007/s12094-019-02243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02243-3

Keywords

Navigation