Skip to main content

Advertisement

Log in

The clinical and prognostic significance of CMTM6/PD-L1 in oncology

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The recent discovery of CMTM6 and to a lesser extent CMTM4, two members of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family, as master positive regulators of PD-L1 expression, the primary ligand of programmed cell death 1 (PD-1), on tumor and immune cells has opened new horizons for investigating the role of CMTM6/CMTM4 in different aspects of oncology including their clinical and prognostic values in different cancer types. The absence of a specific review article addressing the available results about the clinical and prognostic roles of CMTM6 alone and/or in combination with PD-L1 in cancer has encouraged us to write this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ishibashi M, et al. Myeloma drug resistance induced by binding of myeloma B7–H1 (PD-L1) to PD-1. Cancer Immunol Res. 2016;4:779–88. https://doi.org/10.1158/2326-6066.CIR-15-0296.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang P, et al. Upregulation of programmed cell death ligand 1 promotes resistance response in non-small-cell lung cancer patients treated with neo-adjuvant chemotherapy. Cancer Sci. 2016;107:1563–71. https://doi.org/10.1111/cas.13072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mittendorf EA, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2:361–70. https://doi.org/10.1158/2326-6066.CIR-13-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazel M, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol. 2015;9:1773–82. https://doi.org/10.1016/j.molonc.2015.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soliman H, Khalil F, Antonia S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS One. 2014;9: e88557. https://doi.org/10.1371/journal.pone.0088557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barber DL, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7. https://doi.org/10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–5. https://doi.org/10.1038/nature25015.

    Article  CAS  PubMed  Google Scholar 

  8. Jin MH, et al. WEE1 inhibition reverses trastuzumab resistance in HER2-positive cancers. Gastric Cancer. 2021. https://doi.org/10.1007/s10120-021-01176-7.

    Article  PubMed  Google Scholar 

  9. Tu X, et al. PD-L1 (B7–H1) competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell. 2019;74:1215–26. https://doi.org/10.1016/j.molcel.2019.04.005 (e1214).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goydel RS, Rader C. Antibody-based cancer therapy. Oncogene. 2021;40:3655–64. https://doi.org/10.1038/s41388-021-01811-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. https://doi.org/10.1056/NEJMoa1411087.

    Article  CAS  PubMed  Google Scholar 

  14. Powles T, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62. https://doi.org/10.1038/nature13904.

    Article  CAS  PubMed  Google Scholar 

  15. Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  16. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13. https://doi.org/10.1056/NEJMoa1510665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nghiem PT, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med. 2016;374:2542–52. https://doi.org/10.1056/NEJMoa1603702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braun DA, Burke KP, Van Allen EM. Genomic approaches to understanding response and resistance to immunotherapy. Clin Cancer Res. 2016;22:5642–50. https://doi.org/10.1158/1078-0432.CCR-16-0066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan X, et al. CMTM6 overexpression is associated with molecular and clinical characteristics of malignancy and predicts poor prognosis in gliomas. EBioMedicine. 2018;35:233–43. https://doi.org/10.1016/j.ebiom.2018.08.012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2: e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burr ML, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101–5. https://doi.org/10.1038/nature23643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mezzadra R, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549:106–10. https://doi.org/10.1038/nature23669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zugazagoitia J, et al. Quantitative assessment of CMTM6 in the tumor microenvironment and association with response to PD-1 pathway blockade in advanced-stage non-small cell lung cancer. J Thorac Oncol. 2019;14:2084–96. https://doi.org/10.1016/j.jtho.2019.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao F, et al. CMTM6, the newly identified PD-L1 regulator, correlates with PD-L1 expression in lung cancers. Biochem Biophys Rep. 2019;20: 100690. https://doi.org/10.1016/j.bbrep.2019.100690.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yugawa K, et al. CMTM6 stabilizes PD-L1 expression and is a new prognostic impact factor in hepatocellular carcinoma. Hepatol Commun. 2021;5:334–48. https://doi.org/10.1002/hep4.1643.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Chen L, Gu C, Sun Q, Li J. CMTM6 significantly relates to PD-L1 and predicts the prognosis of gastric cancer patients. PeerJ. 2020;8: e9536. https://doi.org/10.7717/peerj.9536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeisbrich M, et al. CMTM6-deficient monocytes in ANCA-associated vasculitis fail to present the immune checkpoint PD-L1. Front Immunol. 2021;12: 673912. https://doi.org/10.3389/fimmu.2021.673912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pang X, et al. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother. 2021;70:1015–29. https://doi.org/10.1007/s00262-020-02741-2.

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, et al. CMTM6 expression in M2 macrophages is a potential predictor of PD-1/PD-L1 inhibitor response in colorectal cancer. Cancer Immunol Immunother. 2021. https://doi.org/10.1007/s00262-021-02931-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chui NN, et al. Inhibition of CMTM4 sensitizes cholangiocarcinoma and hepatocellular carcinoma to T cell-mediated antitumor immunity through PD-L1. Hepatol Commun. 2022;6:178–93. https://doi.org/10.1002/hep4.1682.

    Article  CAS  PubMed  Google Scholar 

  32. Yaseen MM, Abuharfeil NM, Homa D. CMTM6 as a master regulator of PD-L1. Cancer Immunol Immunother.  2022.

  33. Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 2016;9:5023–39. https://doi.org/10.2147/OTT.S105862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang W, Ran R, Shao B, Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat. 2019;178:17–33. https://doi.org/10.1007/s10549-019-05371-0.

    Article  CAS  PubMed  Google Scholar 

  35. Yi M, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018;17:129. https://doi.org/10.1186/s12943-018-0864-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu L, et al. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS One. 2017;12: e0182692. https://doi.org/10.1371/journal.pone.0182692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56. https://doi.org/10.1158/1535-7163.MCT-14-0983.

    Article  CAS  PubMed  Google Scholar 

  38. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol. 2019;77: 105999. https://doi.org/10.1016/j.intimp.2019.105999.

    Article  CAS  PubMed  Google Scholar 

  39. Mocan T, Sparchez Z, Craciun R, Bora CN, Leucuta DC. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol. 2019;21:702–12. https://doi.org/10.1007/s12094-018-1975-4.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka E, et al. Expression of circular RNA CDR1AS in colon cancer cells increases cell surface PDL1 protein levels. Oncol Rep. 2019;42:1459–66. https://doi.org/10.3892/or.2019.7244.

    Article  CAS  PubMed  Google Scholar 

  41. Jin MH, et al. Therapeutic co-targeting of WEE1 and ATM downregulates PD-L1 expression in pancreatic cancer. Cancer Res Treat. 2020;52:149–66. https://doi.org/10.4143/crt.2019.183.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene. 2021. https://doi.org/10.1038/s41388-021-01689-6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiao M, et al. Epithelial to mesenchymal transition regulates surface PD-L1 via CMTM6 and CMTM7 induction in breast cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13051165.

    Article  PubMed Central  Google Scholar 

  44. Wang J, et al. Interleukin-1 receptor-associated kinase 4 as a potential biomarker: overexpression predicts poor prognosis in patients with glioma. Oncol Lett. 2021;21:254. https://doi.org/10.3892/ol.2021.12516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto Y, et al. PD-L1 is induced on the hepatocyte surface via CKLF-like MARVEL transmembrane domain-containing protein 6 up-regulation by the anti-HBV drug entecavir. Int Immunol. 2020;32:519–31. https://doi.org/10.1093/intimm/dxaa018.

    Article  CAS  PubMed  Google Scholar 

  46. Birnbaum DJ, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget. 2016;7:71198–210. https://doi.org/10.18632/oncotarget.11685.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mamessier E, Birnbaum DJ, Finetti P, Birnbaum D, Bertucci F. CMTM6 stabilizes PD-L1 expression and refines its prognostic value in tumors. Ann Transl Med. 2018;6:54. https://doi.org/10.21037/atm.2017.11.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian Y, et al. The association of CMTM6 expression with prognosis and PD-L1 expression in triple-negative breast cancer. Ann Transl Med. 2021;9:131. https://doi.org/10.21037/atm-20-7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dent R, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34. https://doi.org/10.1158/1078-0432.CCR-06-3045.

    Article  PubMed  Google Scholar 

  50. Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20:82. https://doi.org/10.1007/s11864-019-0682-x.

    Article  PubMed  Google Scholar 

  51. Ganau M. Tackling gliomas with nanoformulated antineoplastic drugs: suitability of hyaluronic acid nanoparticles. Clin Transl Oncol. 2014;16:220–3. https://doi.org/10.1007/s12094-013-1114-1.

    Article  CAS  PubMed  Google Scholar 

  52. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med. 2020. https://doi.org/10.1007/s11684-020-0797-2.

    Article  PubMed  Google Scholar 

  53. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10: 200111. https://doi.org/10.1098/rsob.200111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kargbo RB. PROTAC Degradation of IRAK4 for the treatment of Cancer. ACS Med Chem Lett. 2019;10:1370–1. https://doi.org/10.1021/acsmedchemlett.9b00423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Q, et al. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.130867.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cheng BY, et al. IRAK1 Augments cancer stemness and drug resistance via the AP-1/AKR1B10 signaling cascade in hepatocellular carcinoma. Cancer Res. 2018;78:2332–42. https://doi.org/10.1158/0008-5472.CAN-17-2445.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao W, et al. An immunophenotyping of renal clear cell carcinoma with characteristics and a potential therapeutic target for patients insensitive to immune checkpoint blockade. J Cell Biochem. 2019;120:13330–41. https://doi.org/10.1002/jcb.28607.

    Article  CAS  PubMed  Google Scholar 

  58. Koh YW, Han JH, Haam S, Jung J, Lee HW. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients. Oncoimmunology. 2019;8: e1629261. https://doi.org/10.1080/2162402X.2019.1629261.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. https://doi.org/10.1056/NEJMoa1507643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65. https://doi.org/10.1016/s0140-6736(16)32517-x.

    Article  PubMed  Google Scholar 

  62. Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  CAS  PubMed  Google Scholar 

  63. Shang X, et al. CMTM6 is positively correlated with PD-L1 expression and immune cells infiltration in lung squamous carcinoma. Int Immunopharmacol. 2020;88: 106864. https://doi.org/10.1016/j.intimp.2020.106864.

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, et al. Molecular and immune characteristics for lung adenocarcinoma patients with CMTM6 overexpression. Int Immunopharmacol. 2020;83: 106478. https://doi.org/10.1016/j.intimp.2020.106478.

    Article  CAS  PubMed  Google Scholar 

  65. Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-386. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  66. Puram SV, Rocco JW. Molecular aspects of head and neck cancer therapy. Hematol Oncol Clin North Am. 2015;29:971–92. https://doi.org/10.1016/j.hoc.2015.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen L, et al. Targeting CMTM6 suppresses stem cell-like properties and enhances antitumor immunity in head and neck squamous cell carcinoma. Cancer Immunol Res. 2020;8:179–91. https://doi.org/10.1158/2326-6066.CIR-19-0394.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S, et al. CMTM6 and PD-1/PD-L1 overexpression is associated with the clinical characteristics of malignancy in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021. https://doi.org/10.1016/j.oooo.2021.02.019.

    Article  PubMed  Google Scholar 

  69. Zhu SW, et al. Overexpression of CD168 is related to poor prognosis in oral squamous cell carcinoma. Oral Dis. 2021. https://doi.org/10.1111/odi.13766.

    Article  PubMed  Google Scholar 

  70. Wang XL, et al. Overexpression of ATAD2 indicates poor prognosis in oral squamous cell carcinoma. Int J Med Sci. 2020;17:1598–609. https://doi.org/10.7150/ijms.46809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu ZZ, et al. Increased expression of SHMT2 is associated with poor prognosis and advanced pathological grade in oral squamous cell carcinoma. Front Oncol. 2020;10: 588530. https://doi.org/10.3389/fonc.2020.588530.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128. https://doi.org/10.1016/s0140-6736(12)61728-0.

    Article  PubMed  Google Scholar 

  73. Zhou J, et al. Guidelines for diagnosis and treatment of primary liver cancer in China (2017 Edition). Liver Cancer. 2018;7:235–60. https://doi.org/10.1159/000488035.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Papatheodoridis GV, et al. Hepatocellular carcinoma prediction beyond year 5 of oral therapy in a large cohort of caucasian patients with chronic hepatitis B. J Hepatol. 2020;72:1088–96. https://doi.org/10.1016/j.jhep.2020.01.007.

    Article  CAS  PubMed  Google Scholar 

  75. Gao Q, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9. https://doi.org/10.1158/1078-0432.CCR-08-1608.

    Article  CAS  PubMed  Google Scholar 

  76. El-Khoueiry AB, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502. https://doi.org/10.1016/s0140-6736(17)31046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu X, et al. Expression and clinical significance of CMTM6 in hepatocellular carcinoma. DNA Cell Biol. 2019;38:193–7. https://doi.org/10.1089/dna.2018.4513.

    Article  CAS  PubMed  Google Scholar 

  78. Bei C, et al. Clinical significance of CMTM4 expression in hepatocellular carcinoma. Onco Targets Ther. 2017;10:5439–43. https://doi.org/10.2147/OTT.S149786.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bei C, Tan C, Zhu X, Wang Z, Tan S. Association between polymorphisms in CMTM family genes and hepatocellular carcinoma in Guangxi of China. DNA Cell Biol. 2018;37:691–6. https://doi.org/10.1089/dna.2018.4274.

    Article  CAS  PubMed  Google Scholar 

  80. Liu LL, et al. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma. Cancer Immunol Immunother. 2021;70:417–29. https://doi.org/10.1007/s00262-020-02691-9.

    Article  CAS  PubMed  Google Scholar 

  81. Calderaro J, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67:727–38. https://doi.org/10.1016/j.jhep.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  82. Ziol M, et al. Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance. Hepatology. 2018;68:103–12. https://doi.org/10.1002/hep.29762.

    Article  PubMed  Google Scholar 

  83. Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5365–86. https://doi.org/10.7150/thno.58390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bonaventura P, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168. https://doi.org/10.3389/fimmu.2019.00168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang SS, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015;6:41339–49. https://doi.org/10.18632/oncotarget.5463.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Blank C, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004;64:1140–5. https://doi.org/10.1158/0008-5472.can-03-3259.

    Article  CAS  PubMed  Google Scholar 

  87. Curiel TJ, et al. Blockade of B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9:562–7. https://doi.org/10.1038/nm863.

    Article  CAS  PubMed  Google Scholar 

  88. Sierro SR, et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur J Immunol. 2011;41:2217–28. https://doi.org/10.1002/eji.201041235.

    Article  CAS  PubMed  Google Scholar 

  89. Winograd R, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res. 2015;3:399–411. https://doi.org/10.1158/2326-6066.CIR-14-0215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71. https://doi.org/10.1038/nature13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ubukata Y, et al. Role of PD-L1 expression during the progression of submucosal gastric cancer. Oncology. 2021;99:15–22. https://doi.org/10.1159/000509033.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang C, Zhao S, Wang X. Co-expression of CMTM6 and PD-L1: a novel prognostic indicator of gastric cancer. Cancer Cell Int. 2021;21:78. https://doi.org/10.1186/s12935-020-01734-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Talari K, Goyal M. Retrospective studies—utility and caveats. J R Coll Physicians Edinb. 2020;50:398–402. https://doi.org/10.4997/JRCPE.2020.409.

    Article  PubMed  Google Scholar 

  94. Martinez-Morilla S, Zugazagoitia J, Wong PF, Kluger HM, Rimm DL. Quantitative analysis of CMTM6 expression in tumor microenvironment in metastatic melanoma and association with outcome on immunotherapy. Oncoimmunology. 2020;10:1864909. https://doi.org/10.1080/2162402X.2020.1864909.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Peng QH, et al. CMTM6 and PD-L1 coexpression is associated with an active immune microenvironment and a favorable prognosis in colorectal cancer. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001638.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Droeser RA, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49:2233–42. https://doi.org/10.1016/j.ejca.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15:55. https://doi.org/10.1186/s12943-016-0539-x.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Masugi Y, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66:1463–73. https://doi.org/10.1136/gutjnl-2016-311421.

    Article  CAS  PubMed  Google Scholar 

  99. Eriksen AC, et al. Programmed death ligand-1 expression in stage II colon cancer—experiences from a nationwide populationbased cohort. BMC Cancer. 2019;19:142. https://doi.org/10.1186/s12885-019-5345-6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ho HL, et al. PD-L1 is a double-edged sword in colorectal cancer: the prognostic value of PD-L1 depends on the cell type expressing PD-L1. J Cancer Res Clin Oncol. 2019;145:1785–94. https://doi.org/10.1007/s00432-019-02942-y.

    Article  CAS  PubMed  Google Scholar 

  101. Vincent J, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61. https://doi.org/10.1158/0008-5472.CAN-09-3690.

    Article  CAS  PubMed  Google Scholar 

  102. Yaseen MM, Abuharfeil NM, Homa D, Daoud A. Mechanisms of immune suppression by MDSC: the role of IL-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111. https://doi.org/10.1098/rsob.200111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van Der Kraak L, et al. 5-Fluorouracil upregulates cell surface B7–H1 (PD-L1) expression in gastrointestinal cancers. J Immunother Cancer. 2016;4:65. https://doi.org/10.1186/s40425-016-0163-8.

    Article  Google Scholar 

  104. Fu D, et al. T cell recruitment triggered by optimal dose platinum compounds contributes to the therapeutic efficacy of sequential PD-1 blockade in a mouse model of colon cancer. Am J Cancer Res. 2020;10:473–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ishihara S, et al. The association between the expression of PD-L1 and CMTM6 in undifferentiated pleomorphic sarcoma. J Cancer Res Clin Oncol. 2021;147:2003–11. https://doi.org/10.1007/s00432-021-03616-4.

    Article  CAS  PubMed  Google Scholar 

  106. Zhao Y, et al. Prognostic implications of pan-cancer CMTM6 expression and its relationship with the immune microenvironment. Front Oncol. 2020;10: 585961. https://doi.org/10.3389/fonc.2020.585961.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors and colleagues whose works are not cited due to limited space.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MY contributed in writing all sections, evaluating and editing the final version of this manuscript. NA and HD contributed equally in writing the introduction, conclusions, and in evaluating and editing the final version of this manuscript.

Corresponding author

Correspondence to Mahmoud Mohammad Yaseen.

Ethics declarations

Conflict of interest

We have no conflict of interest to be disclosed.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, M.M., Abuharfeil, N.M. & Darmani, H. The clinical and prognostic significance of CMTM6/PD-L1 in oncology. Clin Transl Oncol 24, 1478–1491 (2022). https://doi.org/10.1007/s12094-022-02811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02811-0

Keywords

Navigation