Skip to main content
Log in

Design, fabrication and characterization of terahertz five-band metamaterial absorber

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This research presents the simulation, fabrication, and measurement of a new terahertz (THz) metamaterial absorber (MMA). Copper and polyimide are the materials used in this project. The polyimide substrate is sandwiched between the two copper conductor layers. Theoretical results reveal that the absorber has five distinct and significant absorption peaks at 0.994, 0.97, 0.947, 0.904 and 0.892 THz, respectively, with absorption rates of 94%, 99.9%, 99.9%, 97%, and 92%. The electric field, magnetic field, and surface current distributions are used to investigate the structure’s physical mechanism. The incident and polarisation angles of the structure are modified from 0 to 90 degrees to examine the insensitive behaviour of the incident angle and polarisation angle. Laser micromachining and terahertz time-domain spectroscopy are used to build and examine the structure. This work is compared with previous works. It has numerous scientific and sensory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P H Siegel, IEEE Trans. Microw. Theory Techn, 50, 910 (2002)

    Article  ADS  Google Scholar 

  2. D R Smith, J B Pendry and M C K Wiltshire, Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  3. C D Stoik, M J Bohn and J L Blackshire, Opt. Express. 16, 17039 (2008)

    Article  ADS  Google Scholar 

  4. C Sabah, B Mulla, H Altan and L Ozyuzer, Pramana – J Phys.91, 17 (2018)

    Article  ADS  Google Scholar 

  5. M Tonuchi, Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  6. N I Landy, S Sajuyigbe, J J Mock, D R Smith and W J Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  7. M R Soheilifar and F B Zarrabi, Opt. Quant. Electron. 51, 155 (2019)

    Article  Google Scholar 

  8. H Zhou, F Ding, Y Jin and S He, Prog. Electromagn. Res. C, 119, 449 (2016)

    Article  Google Scholar 

  9. B-X Wang, G-Z Wang and L-L Wang, Plasmonics 11, 523 (2016)

    Article  Google Scholar 

  10. B Ashvanth and S Kanimozhi, Pramana – J Phys. 95, 193 (2021)

    Article  ADS  Google Scholar 

  11. Y Cheng, Y Zou, H Luo, F Chen and X Mao, J. Electron. Mater. 48, 3939 (2019)

    Article  ADS  Google Scholar 

  12. M Pu, M Wang, C Hu, C Huang, Z Zhao, Y Wang and X Luo, Opt. Express 20, 25513 (2012)

    Article  ADS  Google Scholar 

  13. H Liu, K Luo, S Tang, D Peng, F Hu and L Tu, Materials, 11, 2590 (2018)

    Article  ADS  Google Scholar 

  14. X Chen, Z Wu, Z Zhang and Y Zou,

    Article  ADS  Google Scholar 

  15. S Cao, W Yu, T Wang, H Shen, X Han, W Xu and X Zhang, Opt. Mat. Expr., 4, 1876 (2013)

    Article  Google Scholar 

  16. G Shen, M Zhang, Y Ji, W Huang, H Yu and J Shi, AIP Advances, 8, 075206 (2018)

    Article  ADS  Google Scholar 

  17. Q Bian, X Yu, B Zhao, Z Chang and S Lei, Opt. Laser Technol. 45, 395 (2013)

    Article  ADS  Google Scholar 

  18. L Huang, D R Chowdhury, S Ramani, M T Reiten, S N Luo, A J Taylor and H T Chen, Opt. Lett. 37, 154 (2012)

    Article  ADS  Google Scholar 

  19. B X Wang, X Zhai, G Z Wang, W Q Huang and L L Wang, IEEE Photonics J. 7, 1 (2015)

    Google Scholar 

  20. Y He, Q Wu and S Yan, Plasmonics

    Article  Google Scholar 

  21. D Hu, H Wang and Q Zhu, IEEE Photonics J. 8, 1 (2016)

    Google Scholar 

  22. J Zhu, Z Ma, W Sun, F Ding, Q He, L Zhou and Y Ma, Appl. Phys. Lett. 105, 021102 (2014)

    Article  ADS  Google Scholar 

  23. W Withayachumnankul and D Abbott, IEEE Photonics J. 1, 99 (2009)

    Article  ADS  Google Scholar 

  24. B R Sangala, A Nagaraja, P Deshmukh, H Surdi, V G Achanta and S S Prabhu SS, Pramana – J Phys. 94, 2 (2020)

    Article  ADS  Google Scholar 

  25. G Shen, M Zhang, Y Ji, W Huang, H Yu and J Shi, AIP Adv. 8, 075206 (2018)

    Article  ADS  Google Scholar 

  26. S Liu, H Chen and T J Cui, Appl. Phys. Lett. 106, 151601 (2015)

    Article  ADS  Google Scholar 

  27. B-X Wang, Y He, P Lou, W-Q Huang and F Pi, Results Phys. 16, 102930 (2020)

    Article  Google Scholar 

  28. W Wang, K Wang, Z Yang and J Liu, J. Phys. D: Appl. Phys. 50, 13, 135108 (2017)

    Article  ADS  Google Scholar 

  29. A Elakkiya, S Radha and B S Sreeja, Circuit World, 47, 400 (2021)

    Article  Google Scholar 

  30. V K Verma, S K Mishra, K K Kaushal, V Lekshmi and S Sudhakar Plasmonics 15, 75 (2020)

    Article  Google Scholar 

  31. D Hu, H Wang, J Zhang, Z Wang, X Zhang and Q Zhu, J. Phys. D: Appl. Phys. 53, 275108 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srigitha S Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elakkiya, A., Nath, S.S. & Vanitha, M. Design, fabrication and characterization of terahertz five-band metamaterial absorber. Pramana - J Phys 97, 112 (2023). https://doi.org/10.1007/s12043-023-02583-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02583-4

Keywords

PACS Nos

Navigation