Skip to main content
Log in

An Octaband Polarization Insensitive Terahertz Metamaterial Absorber Using Orthogonal Elliptical Ring Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Terahertz metamaterial absorbers are the latest developments that have tremendous applications in terahertz spectroscopy and terahertz imaging. Especially, the research progressed in the direction of designing multiband absorbers. In this work, a polarization-insensitive metamaterial absorber capable of offering absorption in eight bands is proposed. The unit cell of the absorber consists of two orthogonal elliptical ring resonators (ERRs) that are optimally designed to offer maximum absorption in eight bands. The absorption percentage provided by the structure are 89.46% at 0.63 THz, 99.22% at 1.55 THz, 78.02% at 1.89 THz, 99.27% at 2.33 THz, 99.67% at 2.65 THz, 98.67% at 2.91 THz, 99.64% at 3.22 THz, and 88.02% at 3.42 THz. The absorption characteristics were independent of the polarization angle and thus, the structure is insensitive to variations in polarization angle. This is the first work that reports the design of an octaband terahertz absorber and can find significant use in practical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Uspekhi 10(4):509–514

    Article  Google Scholar 

  2. Shamonina E, Solymar L (2007) Metamaterials: how the subject started. Metamaterials 1:12–18

    Article  Google Scholar 

  3. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187

    Article  CAS  Google Scholar 

  4. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) “Perfect metamaterial absorber”, Phys Rev Lett, 100

  5. Ramakrishna SA, Grzegorczyk TM (2008) Physics and application of negative refractive index materials. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1(2):97–105

    Article  CAS  Google Scholar 

  7. El-Aasser MA (2014) Design optimization of nanostrip metamaterial perfect absorbers. J Nanophotonics 8(1):83–85

    Article  Google Scholar 

  8. Siegel PH (2002) Terahertz technology. Microw Theory Tech IEEE Trans 50(3):910–928

    Article  Google Scholar 

  9. Yen TJ et al (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496

    Article  CAS  Google Scholar 

  10. Rhee JY, Yoo YJ, Kim KW, Kim YJ, Lee YP (2014) Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications 28(13):1541–1580

    Article  Google Scholar 

  11. El-Aasser MA, Mahmoud SA (2019) Spectral properties of plasmonic vertical nano-gap array resonators. J Nanoelectron Optoelectron 14(3):420–424

    Article  CAS  Google Scholar 

  12. El-Aasser MA, Mahmoud SA (2017) Spectral response of Fabry-Pérot plasmonic optical resonators. Optoelectron Adv Mater Rapid Commun 11:398–404

    CAS  Google Scholar 

  13. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design fabrication and characterization. Opt Express 16:7181–7188

    Article  Google Scholar 

  14. Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D 43:225102

    Article  Google Scholar 

  15. Wang BX, Wang GZ, Wang LL (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11(2):523–530

    Article  CAS  Google Scholar 

  16. Shan Y, Chen L, Shi C, Cheng Z, Zang X, Xu B, Zhu Y (2015) Ultrathin flexible dual band terahertz absorber. Opt Commun 350:63–70

    Article  CAS  Google Scholar 

  17. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  18. Wang BX, Wang GZ, Sang T (2016) Simple design of novel triple band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys 49:165307–165313

    Article  Google Scholar 

  19. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154102

    Article  Google Scholar 

  20. Liu S, Zhuge J, Ma S, Chen H, Bao D, He Q, Zhou L, Cui TJ (2015) A bi-layered quad-band metamaterial absorber at terahertz frequencies. J Appl Phys 118:245304

    Article  Google Scholar 

  21. Wang BX (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron 23(4):1–7

    Google Scholar 

  22. Meng HY, Wang LL, Zhai X, Liu GD, Xia SX (2018) A simple design of a bulti-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap. Plasmonics 13(1):269–274

    Article  CAS  Google Scholar 

  23. Wang BX, Wang GZ (2016) Quad-band terahertz absorber based on a simple design of metamaterial resonator. IEEE Photonics J 8(6):1–8

    Google Scholar 

  24. Appasani B et al. (2018) “A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications,” Plasmonics, pp. 1–6

  25. Mohanty A, Acharya OP, Appasani B, Mohapatra SK (2018) A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure. Photonics Nanostruct 32:74–80

    Article  Google Scholar 

  26. Wang GZ, Wang BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J Lightwave Technol 33(24):5151–5156

    Article  Google Scholar 

  27. Wang BX, Wang GZ, Sang T, Wang LL (2017) Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci Rep 7:41373

    Article  CAS  Google Scholar 

  28. Hu D, Wang HY, Zhu Q f (2016) Design of six-band terahertz perfect absorber using a simple U-shaped closed-ring resonator. IEEE Photonics J 8(2):1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Appasani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.K., Mishra, S.K., Kaushal, K.K. et al. An Octaband Polarization Insensitive Terahertz Metamaterial Absorber Using Orthogonal Elliptical Ring Resonators. Plasmonics 15, 75–81 (2020). https://doi.org/10.1007/s11468-019-01010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01010-y

Keywords

Navigation