Skip to main content
Log in

Design of a Novel Dual-Band Terahertz Metamaterial Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a novel dual-band terahertz absorber formed by only a patterned U-shaped metallic ring and a metallic ground plane separated by a dielectric layer. Theoretical results show that the proposed absorber has two distinct absorption bands whose peaks are average over 98 %. Different from previous reports by combining the resonances of the complex structure (coplanar super-unit structure or stacked structure) to obtain the dual-band response, the proposed structure utilizes the LC resonance and dipolar response of the single patterned structure and thus making the proposed structure quite easy to be fabricated. The roles of the geometric parameters are investigated to explain the principle of absorption. Furthermore, the proposed concept applies to other types of absorber structure and can be readily extended to other frequency regimes for a host of applications such as detection, imaging, sensing, and selective thermal emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  CAS  Google Scholar 

  2. Pendry JB (2000) Three-dimensional invisibility cloak at optical wavelengths. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  3. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792

    Article  CAS  Google Scholar 

  4. Yang Y, Huang R, Cong L, ZHu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W (2011) Modulating the fundamental inductive-capacitive resonance in asymmetric double-split terahertz metamaterials. Appl Phys Lett 98:121114

    Article  Google Scholar 

  5. Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis CM, Ecnomou EN (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75:235114

    Article  Google Scholar 

  6. Wu D, Fang N, Sun C, Zhang X, Padilla WJ, Basov DN, Smith DR, Schultz S (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201

    Article  CAS  Google Scholar 

  7. Strikwerda AC, Zalkovskij M, Lorenzen DL, Krabbe A, Lavrinenko AV, Jepsen PU (2014) Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz. Appl Phys Lett 104:191103

    Article  Google Scholar 

  8. Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith DR, Padilla WJ (2014) Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 8:605–609

    Article  CAS  Google Scholar 

  9. Fang X, Tseng ML, Ou JY, MacDonald KF, Tsai DP, Zheludev NI (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 104:141102

    Article  Google Scholar 

  10. Caputo JG, Gabitov I, Maimistov AI (2015) Polarization rotation by an rf-SQUID metasurface. Phys Rev B 91:115430

    Article  Google Scholar 

  11. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  12. Zhou J, Koschny T, Soukoulis CM (2008) An efficient way to reduce losses of left-handed metamaterials. Opt Express 16:11147–11152

    Article  Google Scholar 

  13. Wuestner S, Pusch A, Tsakmakidis KL, Hamm JM, Hess O (2010) Overcoming losses with gain in a negative refraction index metamaterials. Phys Rev Lett 105:127401

    Article  Google Scholar 

  14. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  15. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16:7181–7188

    Article  Google Scholar 

  16. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104

    Article  Google Scholar 

  17. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20:7165–7172

    Article  Google Scholar 

  18. Grant J, Ma Y, Lok LB, Khalid A, Cumming DRS (2011) Polarization insensitive terahertz metamaterial absorber. Opt Lett 36:1524–1526

    Article  CAS  Google Scholar 

  19. Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Azad AK, Taylor AJ, Chen HT (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101:101102

    Article  Google Scholar 

  20. Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101

    Article  Google Scholar 

  21. Cui Y, Fuang KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447

    Article  CAS  Google Scholar 

  22. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  23. Ye Y, Jin Y, He S (2010) Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime. J Opt Soc Am B 27:498–503

    Article  CAS  Google Scholar 

  24. Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36:3476–3478

    Article  CAS  Google Scholar 

  25. Ding F, Cui Y, Ge X, Zhang F, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100:103506

    Article  Google Scholar 

  26. Dayal G, Ramakrishna SA (2013) Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J Opt 15:055106

    Article  Google Scholar 

  27. Bhattacharyya S, Ghosh S, Srivastava KV (2013) Triple band polarization independent metamaterial absorber with bandwidth-enhancement at X-band. J Appl Phys 114:094514

    Article  Google Scholar 

  28. Bhattacharyya S, Srivastava KV (2014) Triple-band polarization-independent metamaterial absorber using ELC resonator. J Appl Phys 115:064508

    Article  Google Scholar 

  29. Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901

    Article  Google Scholar 

  30. Kollatou TM, Dimitriadis AI, Assimonis SD, Kantartzis NV, Antonopoulos CS (2014) Multi-band, highly absorbing, microwave metamaterial structures. Appl Phys A 115:555–561

    Article  CAS  Google Scholar 

  31. Li H, Yuan LH, Zhou B, Shen XP, Cheng Q, Cui TJ (2011) Ultrathin multi-band gigahertz metamaterial absorbers. J App Phys 110:014909

    Article  Google Scholar 

  32. Park JW, Tuong PV, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee YP (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21:9691–9702

    Article  Google Scholar 

  33. Viet DT, Hien NH, Tuong PV, Minh NQ, Trang PT, Le LN, Lee YP, Lam VD (2014) Perfect absorber metamaterials: peak, multi-band and broadband absorption. Opt Commun 322:209–213

    Article  CAS  Google Scholar 

  34. Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656–662

    Article  Google Scholar 

  35. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Metamaterial-based low-conductivity alloy perfect absorber. J Lightwave Technol 32:2293–2298

    Article  Google Scholar 

  36. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett 26:111–114

    Article  Google Scholar 

  37. Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D 43:225102

    Article  Google Scholar 

  38. Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36:945–947

    Article  Google Scholar 

  39. Wen Q-Y, Zhang H-W, Xie Y-S, Yang Q-H, Liu Y-L (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett 95:241111

    Article  Google Scholar 

  40. Yuan Y, Bingham C, Tyler T, Palit S, Hand TH, Padilla WJ, Smith DR, Jokerst NM, Cummer SA (2008) Dual-band planar electric metamaterial in the terahertz regime. Opt Express 16:9746–9752

    Article  Google Scholar 

  41. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui TJ (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154101

    Article  Google Scholar 

  42. Ye Q, Liu YL, Lin H, Li M, Yang H (2012) Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl Phys A 107:155–160

    Article  CAS  Google Scholar 

  43. Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J App Phys 117:014504

    Article  Google Scholar 

  44. Wang BX, Wang GZ, Zhai X, Wang LL (2015) Polarization tunable terahertz metamaterial absorber. IEEE Photon J 7:4600507

    Google Scholar 

  45. Liu N, Fu L, Kaiser S, Schweizer H, Giessen H (2008) Plasmonic building for magnetic molecules in three-dimensional optical metamaterials. Adv Mater 20:3859–3865

    Article  CAS  Google Scholar 

  46. Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19:3628–3632

    Article  CAS  Google Scholar 

  47. Jeppesen C, Mortensen NA, Kristensen A (2009) Capacitance tuning of nanoscale split-ring resonators. Appl Phys Lett 95:193108

    Article  Google Scholar 

  48. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353

    Article  CAS  Google Scholar 

  49. Aydin K, Bulu I, Guven K, Kafesaki M, Soukoulis CM, Ozbay E (2005) Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J Phys 7:168

    Article  Google Scholar 

  50. Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology (Grant No. BM2014402), and the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP115A13, JUSRP115A14 and JUSRP115A15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BX., Wang, GZ. & Wang, LL. Design of a Novel Dual-Band Terahertz Metamaterial Absorber. Plasmonics 11, 523–530 (2016). https://doi.org/10.1007/s11468-015-0076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0076-2

Keywords

Navigation