Skip to main content
Log in

Inheritance and biochemical basis of yellowing of apical leaves: a unique trait in chickpea (Cicer arietinum L.)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A unique trait, i.e. yellowing of apical/young leaves in response to low temperature and high relative humidity was identified in a chickpea genotype, ICCX110069. To determine inheritance pattern of this trait, ICCX110069 was crossed to four other genotypes, GL14050, GL14049, GL14059 and SAGL152117, that exhibited normal green apical leaves under similar environmental conditions. The F1, F2, F3, BC1F1 and BC1F2 generations were generated. A ratio of 13 normal green leaf: three yellow leaf was found to be the best fit, indicated digenic gene action with suppressor effect of normal green leaf over the expression of yellowing of apical/young leaf trait. The chlorophyll content was significantly lower, while guaiacol peroxidase activity was significantly higher in yellow leaves of ICCX110069 as compared to green leaves of the same genotype and of GL14049, indicating the competence of antioxidative defence mechanism involved with the expression of this trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Ali A., Yousef C. and Tufall M. 1988 Screening of desi and kabuli chickpea types for iron-deficiency chlorosis. Int. Chickpea Newslett. 18, 5–6.

    Google Scholar 

  • Anbessa Y., Warkentin T., Vandenberg A. and Ball R. 2006 Inheritance of time to flowering in chickpea in a short-season temperate environment. J. Hered. 97, 55–61.

    Article  CAS  Google Scholar 

  • Anonymous 2018 Project coordinator report, pp. 23–24. ICAR-Indian Institute of Pulses Research, Kanpur.

  • Apel K. and Hirt H. 2004 Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  CAS  Google Scholar 

  • Atanasova D. and Mihov M. 2006 Inheritance of flower color and leaf shape of chickpea (Cicer arietinum L.). Bulgarian J. Agi. Sci. 12, 521–524.

    Google Scholar 

  • Awasthi R., Bhandari K. and Nayyar H. 2015 Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3, 11.

    Article  Google Scholar 

  • Barcel A. R. 1995 Peroxidase and not laccase is the enzyme responsible for cell wall lignification in the secondary thickening of xylem vessels in Lupinus. Protoplasma 186, 41–44.

    Article  Google Scholar 

  • Chance B. and Maehly A. C. 1955 Assay of catalases and peroxidases. Meth. Enzymol. 2, 764–775.

    Article  Google Scholar 

  • Croser J. S., Clarke H. J., Siddiqu K. H. M. and Khan T. N. 2003 Low temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit. Rev. Plant Sci. 22, 185–219.

    Article  Google Scholar 

  • Esterbaur H. and Grill D. 1978 Seasonal variation of glutathione and glutathione reductase in needles of Pices abies. Plant Physiol. 61, 119–121.

    Article  Google Scholar 

  • Gaur P. M., Gour V. K. and Singh K. 2004 Induction and inheritance of a variegated leaf and an apical chlorosis mutant in chickpea (Cicer arietinum L.). Indian J. Genet. Plant Breed. 64, 208–211.

    Google Scholar 

  • Gill S. S. and Tuteja N. 2010 Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.

    Article  CAS  Google Scholar 

  • Gowda C. L. L. and Rao B. 1986 Inheritance of susceptibility to iron chlorosis in chickpea. Int. Chickpea Newslett. 15, 7–8.

    Google Scholar 

  • Gumber R. K., Gill S. and Rathore P. K. 1997 Genetics of irrigated- induced iron chlorosis in chickpea. Int. Chickpea Pigeonpea Newslett. 4, 10–11.

    Google Scholar 

  • Hui Z., Tian F. X., Wang G., Wang G. P. and Wang W. 2012 The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep. 31, 1073–1084.

    Article  CAS  Google Scholar 

  • Khaledian Y., Maali Amiri R. and Talei A. 2015 Phenylpropanoid and antioxidant changes in chickpea plants during cold stress. Russ. J. Plant Physiol. 62, 772–778.

    Article  CAS  Google Scholar 

  • Kivrak K. G., Eker T., Sari H., Sari D., Akan K., Aydinoglu B. et al. 2020 Integration of extra-large seeded and double-podded traits in chickpea (Cicer arietinum L). Agronomy 10, 901.

    Article  CAS  Google Scholar 

  • Kumar J, Vijayalakshmi and Rao T. N. 2000 Inheritance of flower color in chickpea. J. Hered. 91, 416–417.

    Article  CAS  Google Scholar 

  • Kumar S., Malik J., Thakur P., Kaistha S., Sharma D. K., Upadhyaya H. D. et al. 2011 Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol. Plant. 33, 779–787.

    Article  CAS  Google Scholar 

  • Ladizinsky G. 1975 A new Cicer from Turkey. Notes from the Royal Botanic Garden, Edinburgh 34, 201–202.

    Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. 1951 Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.

    Article  CAS  Google Scholar 

  • Ma B., Gao L., Zhang H., Cui J. and Shen Z. 2012 Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep. 31, 687–696.

    Article  CAS  Google Scholar 

  • Mallikarjuna B. P., Samineni S., Thudi M., Sajja S. B., Khan A. W., Patil A. et al. 2017 Molecular mapping of flowering time major gene and QTs in chickpea (Cicer arietinum L.). Front. Plant Sci. 8, 1140.

    Article  Google Scholar 

  • Marklund S. L. and Marklund G. 1974 Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474.

    Article  CAS  Google Scholar 

  • Meena H. P. and Kumar J. 2012 Inheritance of seed shape in chickpea (Cicer arietinum L.). Int. J. Sci. Res. 3, 30.

    Google Scholar 

  • Mohanty S., Grimm B. and Tripathy B. C. 2006 Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224, 692–699.

    Article  CAS  Google Scholar 

  • Moura J. C. M. S., Bonine C. A. V., Oliveira De., Fernandes Viana J., Dornelas M. C. and Mazzafera P. 2010 Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376.

    Article  CAS  Google Scholar 

  • Nakano Y. and Asada K. 1981 Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  • Rao N. K., Pundir R. P. S. and Van Der Maesen L. J. G. 1980 Inheritance of some qualitative characters in chickpea (Cicer areitinum L.). Proc. Indian Acad. Sci. 89, 497–503.

    Google Scholar 

  • Sandhu J. S., Gupta S. K., Singh I., Gill B. S. and Bhardwaj R. 2010 Genetics of bushy growth habit and its implications in chickpea improvement. Indian J. Genet. Plant Breed. 70, 383–385.

    Google Scholar 

  • Saxena M. C., Silim S. N. and Singh K. B. 1990 Effect of supplementary irrigation during reproductive growth on winter and spring chickpea (Cicer arietinum) in a Mediterranean environment. J. Agric. Sci. 114, 285–293.

    Article  Google Scholar 

  • Saxena N. P. and Sheldrake A. R. 1980 Iron chlorosis in chickpeas (Cicer arietinum L.) grown on high pH calcareous vertisols. Field Crops Res. 3, 211–214.

    Article  Google Scholar 

  • Shannon L. M., Kay E. and Lew Y. 1966 Peroxidase isoenzymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241, 2166–2172.

    Article  CAS  Google Scholar 

  • Singh S. and Gumber R. K. 1995 Genetics of growth habit in Cicer. Crop Improv. 22, 45–48.

    Google Scholar 

  • Singh S., Gumber R. K. and Gupta S. K. 2006 Inheritance of anthocyanin pigmentation in flower and other plant parts in the genus Cicer. Indian J. Genet. Plant Breed. 66, 237–238.

    CAS  Google Scholar 

  • Srinivasan S. and Gaur P. M. 2012 Genetics and Characterization of an open flower mutant in Chickpea. J. Hered. 103, 297–302.

    Article  CAS  Google Scholar 

  • Toker C., Ceylan F. O., Inci N. E., Yilirim T. and Cagirgan M. I. 2012 Inheritance of leaf shape in the cultivated chickpea (Cicer arietinum L.). Turkish J. Field Crop. 17, 16–18.

    Google Scholar 

  • Turan O. and Ekmekci Y. 2011 Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiol. Plant. 33, 67–78.

    Article  CAS  Google Scholar 

  • Upadhyaya H. D., Bajaj D., Srivastava R., Daware A., Basu U., Tripathi S. et al. 2017 Genetic dissection of plant growth in Chickpea. Funct. Integr. Genomics 17, 711–723.

    Article  CAS  Google Scholar 

  • Yu J., Cang J., Lu Q., Fan B., Xu Q., Li W. and Wang X. 2020 ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system. Plant Signal. Behav. 15, 1780403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvjeet Singh.

Additional information

Corresponding editor: Manoj Prasad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindra, S., Singh, I., Gill, B.S. et al. Inheritance and biochemical basis of yellowing of apical leaves: a unique trait in chickpea (Cicer arietinum L.). J Genet 100, 53 (2021). https://doi.org/10.1007/s12041-021-01302-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01302-5

Keywords

Navigation