Skip to main content

Advertisement

Log in

Life cycle assessment of Chlorella species producing biodiesel and remediating wastewater

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Constantly rising energy demands, finite fossil fuel reserves and deteriorating environmental conditions have invoked worldwide interest to explore the sustainable sources of renewable biofuels. Locally adapted photosynthetic oleaginous microalgae with rapid growth on variable temperatures could be an ideal way for bioremediating the wastewater (WW) while producing the feedstock for biodiesel. To test this notion, an unknown strain was isolated from a sewage fed lake (Neela-Hauz). It was discerned as Chlorella sorokiniana-I using the 16S rDNA and 18S rDNA barcodes. The culture conditions such as pH, illumination, different temperature ranges and growth medium were cohesively optimized prior to the assessment of C. sorokiniana-I’s efficacy to remediate the WW and biodiesel production. The strain has thrived well up to 40°C when continuously grown for 15 days. The highest lipid accumulation and biomass productivity were recorded in 100% WW. Fatty acid methyl ester (FAME) content was observed to be more than twice in WW (47%), compared to control synthetic media, TAP (20%) and BG11 (10%), which indicate the importance of this new isolate for producing economically viable biodiesel. Moreover, it is highly efficient in removing the total nitrogen (77%), total phosphorous (81%), iron (67%) and calcium (42%) from the WW. The quality of WW was considerably improved by reducing the overall chemical oxygen demand (48%), biological oxygen demand (47%) and alkalinity (15%). Thus, C. sorokiniana-I could be an ideal alga for the tropical countries in the remediation of WW while producing feedstock for biodiesel in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

BG11:

blue green medium

TAP:

Tris-acetate phosphate

WW:

wastewater

COD:

chemical oxygen demand

BOD:

biological oxygen demand

TOC:

total organic carbon

TIC:

total inorganic carbon

TN:

total nitrogen

TP:

total phosphorous

FAME:

fatty acid methyl ester

References

  • Abdel-Raouf N, Al-Homaidan AA and Ibraheem IBM 2012 Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19 257–275

    Article  CAS  Google Scholar 

  • Ahmad I, Fatma Z, Yazdani SS and Kumar S 2013 DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res. 2 10–15

    Article  Google Scholar 

  • Amirsadeghi M, Shields-Menard S, French WT and Hernandez R 2015 Lipid production by Rhodotorula glutinis from pulp and paper wastewater for biodiesel production. J. Sustain. Bioenergy Syst. 5 114–125

    Article  CAS  Google Scholar 

  • Arumugam MA, Agarwal A, Arya MC and Ahmed Z 2013 Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour. Technol. 131 246–249

    Article  CAS  Google Scholar 

  • Aussant J, Guihéneuf F and Stengel DB 2018 Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. App. Micobiol. Biotech. 102 5279–5297

    Article  CAS  Google Scholar 

  • Azov Y, Shelef G and Moraine R 1982 Carbon limitation of biomass production in high-rate oxidation ponds. Biotechnol. Bioeng. 24 579–594

    Article  CAS  Google Scholar 

  • Bligh EG and Dyer WJ 1959 A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917

    Article  CAS  Google Scholar 

  • Borowitzka MA 1998 Limits to growth; in wastewater treatment with Algae; in Biotechnology intelligence unit (eds) Wong YS and Tam NFY (Berlin, Heidelberg: Springer) pp 203–226

    Chapter  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M and Hu Q 2009 A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 77 41–47

    Article  CAS  Google Scholar 

  • Chia SR, Ong HC, Chew KW, Show PL, Phang SM, Ling TC, Nagarajan D, Lee DJ and Chang JS 2017 Sustainable approaches for algae utilisation in bioenergy production. Renew. Energy 129 838–852

    Article  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW and Das KC 2010 Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101 3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y 2007 Biodiesel from microalgae. Biotechnol. Adv. 25 294–306

    Article  CAS  Google Scholar 

  • Collet P, Lardon L, Hélias, A, Bricout S, Lombaert-Valot I, Perrier B, Lépine O, Steyer, JP and Bernard O 2014 Biodiesel from microalgae–life cycle assessment and recommendations for potential improvements. Renew. Energy 71 525–533

    Article  CAS  Google Scholar 

  • De-Bashan LE, Trejo A, Huss VA, Hernandez JP and Bashan Y 2008 Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour. Technol. 99 4980–4989

    Article  CAS  Google Scholar 

  • Doyle JJ 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19 11–15.

    Google Scholar 

  • Duong V, Thomas-Hall S and Schenk P 2015 Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front. Plant Sci. 6 359

    Article  Google Scholar 

  • Durrett TP, Benning C and Ohlrogge J 2008 Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54 593–607

    Article  CAS  Google Scholar 

  • Eckardt NA 2010 The Chlorella genome: Big surprises from a small package. Plant. Cell. 22 2924

    Article  CAS  Google Scholar 

  • Fogg GE 1975 in Algal cultures and phytoplankton ecology 2nd edition (ed) Fogg GE (Wisconsin: University of Wisconsin Press) p 175

  • Gorman DS and Levine RP 1965 Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. PNAS 54 1665–1669

    Article  CAS  Google Scholar 

  • Han BP, Virtanen M, Koponen J and Straškraba M 2000 Effect of photoinhibition on algal photosynthesis: A dynamic model. J. Plankton Res. 22 865–885

    Article  CAS  Google Scholar 

  • Higgins BT, Thornton-Dunwoody A, Labavitch JM and Vander Gheynst JS 2014 Microplate assay for quantitation of neutral lipids in extracts from microalgae. Anal. Biochem. 465 81–89

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M and Darzins A 2008 Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54 621–639

    Article  CAS  Google Scholar 

  • Hu Q, Xiang W, Dai S, Li T, Yang F, Jia Q, Wang G and Wu H 2015 The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049. Bioresou. Technol. 192 157–164

    Article  CAS  Google Scholar 

  • Ip SY, Bridger JS, Chin CT, Martin WRB and Raper, WGC 1982 Algal growth in primary settled sewage: The effects of five key variables. Water Res. 16 621–632

    Article  CAS  Google Scholar 

  • Ismail SAA and Ali RFM 2015 Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents. Sci. Technol. Adv. Mater. 16 034602

    Article  Google Scholar 

  • Kawaguchi K 1980 Microalgae production systems in Asia, in Algae biomass (eds) Shelef G and Soeder CJ (Munich Germany: Elsevier/North Holland Biomedical Press) pp 229–244

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU and Acreman J 2007 Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98 2220–2228

    Article  CAS  Google Scholar 

  • Knothe G 2008 Designer biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 22 1358–1364

    Article  CAS  Google Scholar 

  • Kobayashi N, Noel E, Barnes A, Watson A, Rosenberg J, Erickson G and Oyler GA 2013 Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 150 377–386

    Article  CAS  Google Scholar 

  • Lee Y, Ding S, Hoe CH and Low CS 1996 Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. App. Phycol. 8 163–169

    Article  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L and Wang J 2012 Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol. Biofuels 5 18

    Article  CAS  Google Scholar 

  • Li T, Zheng Y, Yu L and Chen S 2013 High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour. Technol. 131 60–67

    Article  CAS  Google Scholar 

  • Li T, Gargouri M, Feng J, Park JJ, Gao D, Miao C, Dong T, Gang DR and Chen S 2015 Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour. Technol. 180 250–257

    Article  CAS  Google Scholar 

  • Lizzul A, Hellier P, Purton S, Baganz F, Ladommatos N and Campos L 2014 Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour. Technol. 151 12–18

    Article  CAS  Google Scholar 

  • Lu S, Wang J, Niu Y, Yang J, Zhou J and Yuan Y 2012 Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol. Bioeng. 109 1651–1662

    Article  CAS  Google Scholar 

  • Mahapatra D, Chanakya H and Ramachandra T 2013 Treatment efficacy of algae-based sewage treatment plants. Environ. Monit. Assess. 185 7145–7164

    Article  CAS  Google Scholar 

  • Martınez ME, Sánchez S, Jimenez J, El Yousfi F and Munoz L 2000 Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73 263–272

    Article  Google Scholar 

  • Mishra A, Medhi K, Maheshwari N, Srivastava S and Thakur IS 2018 Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Bioresour. Technol. 253 121–129

    Article  CAS  Google Scholar 

  • Morgulis A, Coulouris G, Raytselis Y, Madden T, Agarwala R and Schäffer A 2008 Database indexing for production MegaBLAST searches. Bioinformatics. 24 1757–1764.

    Article  CAS  Google Scholar 

  • Mulbry W, Kondrad S and Buyer J 2008 Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20 1079–1085

    Article  Google Scholar 

  • Ngangkham M, Ratha S, Prasanna R, Saxena A, Dhar D, Sarika C and Prasad R 2012 Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springerplus 1 33

    Article  Google Scholar 

  • Ogbonna J, Yoshizawa H and Tanaka H 2000 Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J. Appl. Phycol. 12 277–284

    Article  CAS  Google Scholar 

  • Oswald W 1988b Microalgae and wastewater treatment; in Microalgal biotechnology (eds) Borowitzka M and Borowitzka L (New York: Cambridge University Press) pp 357–394

    Google Scholar 

  • Patterson G 1970 Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5 597–600.

    Article  CAS  Google Scholar 

  • Pereira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte C, Custódio L and Varela J 2011 Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol. Biofuels 4 61

    Article  CAS  Google Scholar 

  • Pittman J, Dean A and Osundeko O 2011 The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102 17–25

    Article  CAS  Google Scholar 

  • Qiao H, Wang G and Zhang X 2009 Isolation and characterization of Chlorella sorokiniana gxnn01 (chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol. 45 1153–1162

    Article  Google Scholar 

  • Rai L, Mallick N, Singh J and Kumar H 1991 Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J. Plant Physiol. 138 68–74

    Article  CAS  Google Scholar 

  • Ramírez-Verduzco L, García-Flores B, Rodríguez-Rodríguez J and del Rayo Jaramillo-Jacob A 2011 Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel 90 1751–1761

    Article  Google Scholar 

  • Ras M, Steyer J and Bernard O 2013 Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Bio. 12 153–164

    Article  CAS  Google Scholar 

  • Saitou N and Nei M 1987 The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406–425

    CAS  PubMed  Google Scholar 

  • Salim S, Shi Z, Vermuë M and Wijffels R 2013 Effect of growth phase on harvesting characteristics, autoflocculation and lipid content of Ettlia texensis for microalgal biodiesel production. Bioresour. Technol. 138 214–221

    Article  CAS  Google Scholar 

  • Sander K and Murthy G 2010 Life cycle analysis of algae biodiesel. Int. J. Life Cycle Assess. 15 704–714

    Article  CAS  Google Scholar 

  • Saxena P, Jawale S and Joshipura M 2013 A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Eng. 51 395–402

    Article  CAS  Google Scholar 

  • Sieira P, Galante E, Boareto Mendes A and Haddad A 2015 Life cycle assessment of a biodiesel production unit. Am. J. Chem. Eng. 3 25–29

    Article  Google Scholar 

  • Singh R, Birru R and Sibi G 2017a Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. J. Environ. Prot. 8 1–11

    Article  Google Scholar 

  • Singh AK, Sharma N, Farooqi H, Abdin MZ, Mock T and Kumar S 2017b Phycoremediation of municipal wastewater by microalgae to produce biofuel. Int. J. Phytoremediat. 19(9) 805–812

    Article  CAS  Google Scholar 

  • Soomro R, Ndikubwimana T, Zeng X, Lu Y, Lin L and Danquah M 2016 Development of a two-stage microalgae dewatering process a life cycle assessment approach. Front. Plant Sci. 7 113.

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A and Kumar S 2013 MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729

    Article  CAS  Google Scholar 

  • Thompson J, Higgins D and Gibson T 1994 CLUSTAL w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680

    Article  CAS  Google Scholar 

  • Wan M, Wang R, Xia J, Rosenberg J, Nie Z, Kobayashi N, Oyler G. and Betenbaugh M 2012 Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol. Bioeng. 109 1958–1964

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y and Ruan R 2010 Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162 1174–1186

    Article  CAS  Google Scholar 

  • Whitton R, Ometto F, Pidou M, Jarvis P, Villa R and Jefferson B 2015 Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 4 133–148

    Article  CAS  Google Scholar 

  • Wood B, Grimson P, German J and Turner M 1999 Photoheterotrophy in the production of phytoplankton organisms. J. Biotechnol. 70 175–183

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L and Miller W 2000 A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7 203–214

    Article  CAS  Google Scholar 

  • Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z and Yu Z 2018 Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 250 449–456

    Article  CAS  Google Scholar 

  • Zhu L, Li Z and Hiltunen E 2016 Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed. Res. Int. 2016 1–8

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Mr. Girish HR, ICGEB, New Delhi, for assistance in GC–MS analysis and thanks to Mr. Rajeev Bahuguna. ICGEB, New Delhi, for carrying the algal-treated WW vs un-treated WW on rice plants. This work was supported by the funding from Department of Biotechnology (DBT) (Grant No. ND/DBT/12/17), Government of India and Centre for High Technology (CHT) (Grant No. ND/CPCL/Aban/17012)/India to SK. University Grants Commission (UGC), Government of India provided Ph.D. fellowship to PN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Kumar.

Additional information

Communicated by BJ RAO.

Corresponding editor: BJ Rao

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawkarkar, P., Singh, A.K., Abdin, M.Z. et al. Life cycle assessment of Chlorella species producing biodiesel and remediating wastewater. J Biosci 44, 89 (2019). https://doi.org/10.1007/s12038-019-9896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9896-0

Keywords

Navigation