Skip to main content

Advertisement

Log in

Proteomic-miRNA Biomics Profile Reveals 2D Cultures of Human iPSC-Derived Neural Progenitor Cells More Sensitive than 3D Spheroid System Against the Experimental Exposure to Arsenic

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The iPSC-derived 3D models are considered to be a connective link between 2D culture and in vivo studies. However, the sensitivity of such 3D models is yet to be established. We assessed the sensitivity of the hiPSC-derived 3D spheroids against 2D cultures of neural progenitor cells. The sub-toxic dose of Sodium Arsenite (SA) was used to investigate the alterations in miRNA-proteins in both systems. Though SA exposure induced significant alterations in the proteins in both 2D and 3D systems, these proteins were uncommon except for 20 proteins. The number and magnitude of altered proteins were higher in the 2D system compared to 3D. The association of dysregulated miRNAs with the target proteins showed their involvement primarily in mitochondrial bioenergetics, oxidative and ER stress, transcription and translation mechanism, cytostructure, etc., in both culture systems. Further, the impact of dysregulated miRNAs and associated proteins on these functions and ultrastructural changes was compared in both culture systems. The ultrastructural studies revealed a similar pattern of mitochondrial damage, while the cellular bioenergetics studies confirm a significantly higher energy failure in the 2D system than to 3D. Such a higher magnitude of changes could be correlated with a higher amount of internalization of SA in 2D cultures than in 3D spheroids. Our findings demonstrate that a 2D culture system seems better responsive than a 3D spheroid system against SA exposure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw data of proteomics are available on the CCMS-MassIVE (accession No. MassIVE MSV000092902) online data repository. The raw data are available in the repository of the Institute on its server, and with the corresponding author too.

References

  1. Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL et al (2021) 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci 14(5):1659–1680. https://doi.org/10.1111/cts.13066

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pratumkaew P, Issaragrisil S, Luanpitpong S (2021) Induced pluripotent stem cells as a tool for modeling hematologic disorders and as a potential source for cell-based therapies. Cells 10(11):3250. https://doi.org/10.3390/cells10113250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hogberg HT, Smirnova L (2022) The future of 3D brain cultures in developmental neurotoxicity testing. Front Toxicol 4:808620. https://doi.org/10.3389/ftox.2022.808620

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rowe RG, Daley GQ (2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet 20(7):377–388. https://doi.org/10.1038/s41576-019-0100-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Truskey GA (2018) Human microphysiological systems and organoids as in vitro models for toxicological studies. Front Public Health 6:185. https://doi.org/10.3389/fpubh.2018.00185

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lovett ML, Nieland TJF, Dingle YL, Kaplan DL (2020) Innovations in 3-dimensional tissue models of human brain physiology and diseases. Adv Funct Mater 30(44). https://doi.org/10.1002/adfm.201909146

  8. Juarez-Moreno K, Chavez-Garcia D, Hirata G, Vazquez-Duhalt R (2022) Monolayer (2D) or spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and cell internalization of nanoparticles. Toxicol In Vitro 85:105461. https://doi.org/10.1016/j.tiv.2022.105461

    Article  CAS  PubMed  Google Scholar 

  9. Caipa Garcia AL, Arlt VM, Phillips DH (2022) Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 37(2):143–154. https://doi.org/10.1093/mutage/geab023

    Article  CAS  PubMed  Google Scholar 

  10. Zhao C, Cai Z (2023) Mass spectrometry-based omics and imaging technique: a novel tool for molecular toxicology and health impacts. Rev Environ Contam Toxicol 261(1). https://doi.org/10.1007/s44169-023-00032-2

  11. Promthep K, Nopparat C, Mukda S, Pannengpetch S, Wisomka P, Chantadul V, Phanchana M, Panmanee J (2022) Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 93:71–83. https://doi.org/10.1016/j.neuro.2022.08.015

    Article  CAS  PubMed  Google Scholar 

  12. Srivastava AK, Yadav SS, Mishra S, Yadav SK, Parmar D, Yadav S (2020) A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells. Nanotoxicology 14(6):757–773. https://doi.org/10.1080/17435390.2020.1759726

    Article  CAS  PubMed  Google Scholar 

  13. Smirnova L, Seiler AEM, Luch A (2015) microRNA profiling as tool for developmental neurotoxicity testing (DNT). Curr Protoc Toxicol 64:20 29 21–20 29 22. https://doi.org/10.1002/0471140856.tx2009s64

  14. Pamies D, Block K, Lau P, Gribaldo L, Pardo CA, Barreras P, Smirnova L, Wiersma D et al (2018) Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 354:101–114. https://doi.org/10.1016/j.taap.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du X, Luo L, Huang Q, Zhang J (2022) Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats. Sci Total Environ 820:153325. https://doi.org/10.1016/j.scitotenv.2022.153325

    Article  CAS  PubMed  Google Scholar 

  16. Schultz L, Zurich MG, Culot M, da Costa A, Landry C, Bellwon P, Kristl T, Hormann K et al (2015) Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro 30(1 Pt A):138–165. https://doi.org/10.1016/j.tiv.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  17. Negi R, Srivastava A, Srivastava AK, Pandeya A, Vatsa P, Ansari UA, Pant AB (2023) Proteome architecture of human-induced pluripotent stem cell-derived three-dimensional organoids as a tool for early diagnosis of neuronal disorders. Indian J Pharmacol 55(2):108–118. https://doi.org/10.4103/ijp.ijp_56_23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rajpurohit CS, Kumar V, Cheffer A, Oliveira D, Ulrich H, Okamoto OK, Zatz M, Ansari UA et al (2020) Mechanistic insights of astrocyte-mediated hyperactive autophagy and loss of motor neuron function in SOD1 L39R linked amyotrophic lateral sclerosis. Mol Neuro 57:4117–4133. https://doi.org/10.1007/s12035-020-02006-0

    Article  CAS  Google Scholar 

  19. Roper SJ, Linke F, Scotting PJ, Coyle B (2021) 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep 11(1):4259. https://doi.org/10.1038/s41598-021-83809-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar V, Pandey A, Jahan S, Shukla RK, Kumar D, Srivastava A, Singh S, Rajpurohit CS et al (2016) Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 6(1):28142. https://doi.org/10.1038/srep28142

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Xu S, Wu T, Hu K, Chen S, Xu A, Wu L (2018) Assessment of genotoxic effects by constructing a 3d cellular system with highly sensitive mutagenic human–hamster hybrid cells. Chem Res Toxicol 31(7):594–600. https://doi.org/10.1021/acs.chemrestox.8b00069

    Article  CAS  PubMed  Google Scholar 

  22. Yadav SK, Jauhari A, Singh N, Pandey A, Sarkar S, Pandey S, Garg RK, Parmar D et al (2023) Transcriptomics and proteomics approach for the identification of altered blood micrornas and plasma proteins in parkinson’s disease. Cel Mol Neuro 45:3527–3553. https://doi.org/10.1007/s10571-023-01362-4

    Article  CAS  Google Scholar 

  23. Petyuk VA, Yu L, Olson HM, Yu F, Clair G, Qian WJ, Shulman JM, Bennett DA (2021) Proteomic profiling of the substantia nigra to identify determinants of lewy body pathology and dopaminergic neuronal loss. J Proteome Res 20(5):2266–2282. https://doi.org/10.1021/acs.jproteome.0c00747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Javed Z, Worley BL, Stump C, Shimko SS, Crawford LC, Mythreye K, Hempel N (2022) Optimization of extracellular flux assay to measure respiration of anchorage-independent tumor cell spheroids. Bio Protoc 12(4):e4321. https://doi.org/10.21769/BioProtoc.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi H, Rath EM, Lin RCY, Sarun KH, Clarke CJ, McCaughan BC, Ke H, Linton A et al (2022) 3-Dimensional mesothelioma spheroids provide closer to natural pathophysiological tumor microenvironment for drug response studies. Front Oncol 12:973576. https://doi.org/10.3389/fonc.2022.973576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Q, Cohen JD, Yukawa T, Estrella H, Leonard C, Nunes J, Choi C, Lewis L et al (2022) Assessment of a 3D neural spheroid model to detect pharmaceutical-induced neurotoxicity. Altex 39(4):560–582. https://doi.org/10.14573/altex.2112221

    Article  PubMed  Google Scholar 

  28. Zhang Q, Nguyen AL, Shi S, Hill C, Wilder-Smith P, Krasieva TB, Le AD (2012) Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells Dev 21(6):937–947. https://doi.org/10.1089/scd.2011.0252

    Article  CAS  PubMed  Google Scholar 

  29. Wolff A, Frank M, Staehlke S, Peters K (2022) A comparative study on the adipogenic differentiation of mesenchymal stem/stromal cells in 2D and 3D culture. Cells 11(8):1313. https://doi.org/10.3390/cells11081313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Regmi S, Raut PK, Pathak S, Shrestha P, Park P-H, Jeong J-HJA (2021) Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 17(10):2991–3010. https://doi.org/10.1080/15548627.2020.1850608

    Article  CAS  PubMed  Google Scholar 

  31. Thakur M, Rachamalla M, Niyogi S, Datusalia AK, Flora SJS (2021) Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions. Int J Mol Sci 22(18). https://doi.org/10.3390/ijms221810077

  32. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, Ibbs M, Blizniak R et al (2018) 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  PubMed  Google Scholar 

  33. Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I et al (2022) Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 16:1009125. https://doi.org/10.3389/fnins.2022.1009125

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41(12):1035–1049. https://doi.org/10.1016/j.tibs.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braymer JJ, Lill R (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 292(31):12754–12763. https://doi.org/10.1074/jbc.R117.787101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandravanshi LP, Gupta R, Shukla RK (2018) Developmental neurotoxicity of arsenic: involvement of oxidative stress and mitochondrial functions. Biol Trace Elem Res 186(1):185–198. https://doi.org/10.1007/s12011-018-1286-1

    Article  CAS  PubMed  Google Scholar 

  37. Hewitt T, Alural B, Tilak M, Wang J, Becke N, Chartley E, Perreault M, Haggarty SJ et al (2023) Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca(2+) entry and accelerated differentiation. Mol Psychiatry 1–14. https://doi.org/10.1038/s41380-023-02152-6

  38. Zheng Y, Shi Y, Tian C, Jiang C, Jin H, Chen J, Almasan A, Tang H et al (2004) Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene 23(6):1239–1247. https://doi.org/10.1038/sj.onc.1207205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chavan H, Christudoss P, Mickey K, Tessman R, Ni HM, Swerdlow R, Krishnamurthy P (2017) Arsenite effects on mitochondrial bioenergetics in human and mouse primary hepatocytes follow a nonlinear dose response. Oxid Med Cell Longev 2017:9251303. https://doi.org/10.1155/2017/9251303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding B, Ma X, Liu Y, Ni B, Lu S, Chen Y, Liu X, Zhang W (2023) Arsenic-Induced, mitochondria-mediated apoptosis is associated with decreased peroxisome proliferator-activated receptor γ coactivator α in rat brains. Toxics 11(7):576. https://doi.org/10.3390/toxics11070576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lan J, Tang L, Wu S, Huang R, Zhong G, Jiang X, Tang Z, Hu L (2022) Curcumin alleviates arsenic-induced injury in duck skeletal muscle via regulating the PINK1/Parkin pathway and protecting mitochondrial function. Toxicol Appl Pharmacol 434:115820. https://doi.org/10.1016/j.taap.2021.115820

    Article  CAS  PubMed  Google Scholar 

  42. Zhong G, Hu T, Tang L, Li T, Wu S, Duan X, Pan J, Zhang H, Tang Z, Feng X (2022) Arsenic causes mitochondrial biogenesis obstacles by inhibiting the AMPK/PGC-1α signaling pathway and also induces apoptosis and dysregulated mitophagy in the duck liver. Ecotoxicol Environ Safy 230:113117. https://doi.org/10.1016/j.ecoenv.2021.113117

    Article  CAS  Google Scholar 

  43. Chen Y, Liu X, Zhang Q, Wang H, Zhang R, Ge Y, Liang H, Li W et al (2023) Arsenic induced autophagy-dependent apoptosis in hippocampal neurons via AMPK/mTOR signaling pathway. Food Chem Toxicol 179:113954. https://doi.org/10.1016/j.fct.2023.113954

    Article  CAS  PubMed  Google Scholar 

  44. Cho J-H, Lee S, Jeon H, Kim AH, Lee W, Lee Y, Yang S, Yun J et al (2020) Tetrabromobisphenol A-induced apoptosis in neural stem cells through oxidative stress and mitochondrial dysfunction. Neurotox Res 38:74–85. https://doi.org/10.1007/s12640-020-00179-z

    Article  CAS  PubMed  Google Scholar 

  45. Ding B, Ma X, Liu Y, Ni B, Lu S, Chen Y, Liu X, Zhang W (2023) Arsenic-induced, mitochondria-mediated apoptosis is associated with decreased peroxisome proliferator-activated receptor γ coactivator α in rat brains. J Toxics 11(7):576. https://doi.org/10.3390/toxics11070576

    Article  CAS  Google Scholar 

  46. Medda N, Patra R, Ghosh TK, Maiti S (2020) Neurotoxic mechanism of arsenic: synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment. Biol Trace Elem Res 198(1):8–15. https://doi.org/10.1007/s12011-020-02044-8

    Article  CAS  PubMed  Google Scholar 

  47. Zhang X, Yang H, Wang Y, Zhang J, Zhang H, Cao X, Hu T, Lin J et al (2023) Proteomic study on the mechanism of arsenic neurotoxicity in the rat cerebral cortex and the protective mechanism of dictyophora polysaccharides against arsenic neurotoxicity. ACS Chem Neuro. https://doi.org/10.1021/acschemneuro.3c00009

    Article  Google Scholar 

  48. Jovanovic B, Eiermann N, Talwar D, Boulougouri M, Dick TP, Stoecklin G (2021) Thioredoxin 1 is required for stress granule assembly upon arsenite-induced oxidative stress. Food Chem Toxicol 156:112508. https://doi.org/10.1016/j.fct.2021.112508

    Article  CAS  PubMed  Google Scholar 

  49. Masjosthusmann S, Blum J, Bartmann K, Dolde X, Holzer AK, Stürzl LC, Keßel EH, Förster N, Dönmez A, Klose J (2020) Establishment of an a priori protocol for the implementation and interpretation of an in‐vitro testing battery for the assessment of developmental neurotoxicity. J EFSA Supporting Publications 17 (10):1938E

  50. Yu JT, Liu Y, Dong P, Cheng RE, Ke SX, Chen KQ, Wang JJ, Shen ZS et al (2019) Up-regulation of antioxidative proteins TRX1, TXNL1 and TXNRD1 in the cortex of PTZ kindling seizure model mice. PLoS ONE 14(1):e0210670. https://doi.org/10.1371/journal.pone.0210670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ali R, Alhaj Sulaiman A, Memon B, Pradhan S, Algethami M, Aouida M, McKay G, Madhusudan S et al (2023) Altered regulation of the glucose transporter GLUT3 in PRDX1 null cells caused hypersensitivity to arsenite. Cells 12(23):2682. https://doi.org/10.3390/cells12232682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prakash C, Soni M, Kumar V (2016) Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: a review. J Appl Toxicol 36(2):179–188. https://doi.org/10.1002/jat.3256

    Article  CAS  PubMed  Google Scholar 

  53. Kodron A, Mussulini BH, Pilecka I, Chacinska A (2021) The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 163:105248. https://doi.org/10.1016/j.phrs.2020.105248

    Article  CAS  PubMed  Google Scholar 

  54. Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touze N (1861) Cohen MM (2020) The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. Biochim Biophys Acta Bioenerg 12:148302. https://doi.org/10.1016/j.bbabio.2020.148302

    Article  CAS  Google Scholar 

  55. Tam LM, Wang Y (2020) Arsenic exposure and compromised protein quality control. Chem Res Toxicol 33(7):1594–1604. https://doi.org/10.1021/acs.chemrestox.0c00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dodson M, de la Vega MR, Harder B, Castro-Portuguez R, Rodrigues SD, Wong PK, Chapman E, Zhang DD (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106–113. https://doi.org/10.1016/j.taap.2018.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dodson M, Liu P, Jiang T, Ambrose AJ, Luo G, Rojo de la Vega M, Cholanians AB, Wong PK et al (2018) Increased O-GlcNAcylation of SNAP29 drives arsenic-induced autophagic dysfunction. Mol Cell Biol 38 (11). https://doi.org/10.1128/MCB.00595-17

  58. Turakhiya A, Meyer SR, Marincola G, Bohm S, Vanselow JT, Schlosser A, Hofmann K, Buchberger A (2018) ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol Cell 70(5):906-919 e907. https://doi.org/10.1016/j.molcel.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  59. Zhao P, Guo Y, Zhang W, Chai H, Xing H, Xing M (2017) Neurotoxicity induced by arsenic in Gallus Gallus: regulation of oxidative stress and heat shock protein response. Chemosphere 166:238–245. https://doi.org/10.1016/j.chemosphere.2016.09.060

    Article  CAS  PubMed  Google Scholar 

  60. Advani VM, Ivanov P (2019) Translational control under stress: reshaping the translatome. BioEssays 41(5):e1900009. https://doi.org/10.1002/bies.201900009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Low YH, Asi Y, Foti SC, Lashley T (2021) Heterogeneous nuclear ribonucleoproteins: implications in neurological diseases. Mol Neurobio 58(2):631–646. https://doi.org/10.1007/s12035-020-02137-4

    Article  CAS  Google Scholar 

  62. Medda N, De SK, Maiti S (2021) Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol Environ Saf 208:111752. https://doi.org/10.1016/j.ecoenv.2020.111752

    Article  CAS  PubMed  Google Scholar 

  63. Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S (2017) From the cover: arsenic induces hippocampal neuronal apoptosis and cognitive impairments via an up-regulated BMP2/Smad-dependent reduced BDNF/TrkB signaling in rats. Toxicol Sci 159(1):137–158. https://doi.org/10.1093/toxsci/kfx124

    Article  CAS  PubMed  Google Scholar 

  64. He Z, Zhang Y, Zhang H, Zhou C, Ma Q, Deng P, Lu M, Mou Z et al (2021) NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in Oli-neu cells. Ecotoxicol Environ Saf 223:112554. https://doi.org/10.1016/j.ecoenv.2021.112554

    Article  CAS  PubMed  Google Scholar 

  65. Chen G, Wang M, Ruan Z, Zhu L, Tang C (2021) Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci 280:119742. https://doi.org/10.1016/j.lfs.2021.119742

    Article  CAS  PubMed  Google Scholar 

  66. Malakootian M, Naeli P, Mowla SJ, Seidah NG (2022) Post-transcriptional effects of miRNAs on PCSK7 expression and function: miR-125a-5p, miR-143–3p, and miR-409–3p as negative regulators. Metabolites 12 (7). https://doi.org/10.3390/metabo12070588

  67. Xu L, Chen W, Chen J, Jin Y, Ma W, Qi G, Sun X, Luo J et al (2022) PIWI-interacting RNA-23210 protects against acetaminophen-induced liver injury by targeting HNF1A and HNF4A. Biochem Pharmacol 197:114897. https://doi.org/10.1016/j.bcp.2021.114897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Renu Negi is grateful to CSIR-UGC, New Delhi, for providing Research Fellowship. The authors are grateful to Ms Deepshikha Srivastava, Technical Officer, LC-MS/MS Laboratory, and Mr Jai Shankar, Technical Officer, Microscope Laboratory, Central Instrumentation Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, India, for extending the operational support for LC-MS/MS during proteomics studies and Transmission Electron Microscopic study.

Funding

The research was funded by the Indian Council of Medical Research (ICMR), New Delhi, India (Grant Sanction number: 5/4–5/3/9/DHR/Neuro/2021/NCD-1 dated 30/03/2022).

Author information

Authors and Affiliations

Authors

Contributions

ABP has conceptualized the research work, designed the protocols, acquired the funds, project administration work, supervised throughout experimentations, and reviewed and edited the manuscript. RN, AS, and AKS performed the experiments, data curation, and analysis and prepared the original draft of the manuscript. PV and UAA helped with the data analysis writing and editing of the manuscript. BK and HS assisted in carrying out the parts of the Open Array and Real-Time PCR experiments. AP helps in the investigation, formal analysis, and visualization of the data.

Corresponding author

Correspondence to AB Pant.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the contents of the manuscript and have provided their consent to publish the data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3679 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, R., Srivastava, A., Srivastava, A.K. et al. Proteomic-miRNA Biomics Profile Reveals 2D Cultures of Human iPSC-Derived Neural Progenitor Cells More Sensitive than 3D Spheroid System Against the Experimental Exposure to Arsenic. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03924-z

Keywords

Navigation