Skip to main content

Advertisement

Log in

3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

Tumor spheroids are one of the well-characterized 3D culture systems bearing close resemblance to the physiological tissue organization and complexity of avascular solid tumor stage with hypoxic core. They hold a wide-spread application in the field of pharmaceutical science and anti-cancer drug research. However, the difficulty in determining optimal technique for the generation of spheroids with uniform size and shape, evaluation of experimental outputs, or mass production often limits their usage in anti-cancer research and in high-throughput drug screening. In recent times, several studies have demonstrated various simple techniques for generating uniform-size 3D spheroids, including the hanging drop (HD), liquid overlay technique (LOT), and microfluidic approaches. Morphological alterations apart from biochemical assays, and staining techniques are suitably employed for the evaluation of experimental outcomes within 3D spheroid models. Morphological alterations in response to effective anti-cancer drug treatment in 3D tumor spheroids such as reduced spheroid size, loss of spheroid compactness and integrity or smooth surface, are highly reliable. These alterations can significantly reduce the need for biochemical assays and staining techniques, resulting in both time and cost savings. The present article specifically covers a variety of available procedures in spheroid generation. For practical applicability, we have supplemented our review study with the generation of glioblastoma U87 spheroids using HD and LOT methods. Additionally, we have also incorporated the outcome of U87 spheroid treatment with doxorubicin on spheroid morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used and or/analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

5-FU:

5-Fluorouracil

5-FUChnps:

5-FU loaded chitosan nanoparticles

CAR:

Cell adhesion recognition

CPT:

Cisplatin

D:

Diameter

D2R:

Dopamine D2 receptor

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

DOX:

µ

FBS:

Fetal bovine serum

GBM:

Glioblastoma multiforme

GFR:

Growth factor reduced

H:

Hour

HD:

Hanging drop

IFF:

Interstitial fluid flow

LOT:

Liquid overlay technique

NA:

Not applicable

N/A:

Data not available

NCCS:

National Centre for Cell Science

OGC:

N-octanoyl glycol chitosan

PDAC:

Pancreatic ductal adenocarcinoma

PDMS:

Polydimethylsiloxane

PEGNIO:

Polyethylene glycolated niosomes

PMX:

Pemetrexed

PEGNIO:

Polyethylene glycolated niosomes

PEGNIO/D–C/t-Lyp-1:

PEGNIO/D–C conjugated with t-Lyp-1 peptide

PNIPAM-co-AA:

Poly(N-isopropylacrylamide-co-acrylic acid)

PI:

Propidium iodide

RPM:

Revolution per minute

STP:

Stiripentol

THPMs:

2-Oxo-1,2,3,4-tetrahydropyrimidines

TMZ:

Temozolomide

TPZ:

Tirapazamine

TME:

Tumor microenvironment

ULA:

Ultra low attachment

↓:

Decreased/reduced

References

  1. Cooper GM, Hausman RE. The development and causes of cancer. The cell: A molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Available from https://www.ncbi.nlm.nih.gov/books/NBK9963/.

  2. Fontebasso Y, Dubinett SM. Drug development for metastasis prevention. Crit Rev Oncog. 2015;20(5–6):449–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zanoni M, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cwikiel W, et al. Malignant esophageal strictures: treatment with a self-expanding nitinol stent. Radiology. 1993;187(3):661–5.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobi N, et al. Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget. 2017;8(64):107423–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mellor HR, Ferguson DJ, Callaghan R. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. Br J Cancer. 2005;93(3):302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ware MJ, et al. Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique. Tissue Eng Part C Methods. 2016;22(4):312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma HL, et al. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol Imaging. 2012;11(6):487–98.

    Article  CAS  PubMed  Google Scholar 

  9. Karlsson H, et al. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res. 2012;318(13):1577–85.

    Article  CAS  PubMed  Google Scholar 

  10. Kang A, et al. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Nanomedicine. 2015;11(5):1153–61.

    Article  CAS  PubMed  Google Scholar 

  11. Filipiak-Duliban A, Brodaczewska K, Kajdasz A, Kieda C. Spheroid culture differentially affects cancer cell sensitivity to drugs in melanoma and rcc models. Int J Mol Sci. 2022;23(3):1166.

  12. Nederman T, et al. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 1984;44(7):3090–7.

    CAS  PubMed  Google Scholar 

  13. Miyazaki T, et al. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors. Tissue Eng Part A. 2010;16(5):1575–84.

    Article  CAS  PubMed  Google Scholar 

  14. Liao W, et al. Therapeutic potential of CUDC-907 (Fimepinostat) for hepatocarcinoma treatment revealed by tumor spheroids-based drug screening. Front Pharmacol. 2021;12:658197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wanigasekara J, et al. Plasma induced reactive oxygen species-dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Processes Polym. 2022;19(4):2100157.

    Article  CAS  Google Scholar 

  16. Zraikat M, Alshelleh T. Comparison between different 3D spheroid tumor invasion models. Assay Drug Dev Technol. 2020;18(5):239–42.

    Article  CAS  PubMed  Google Scholar 

  17. Vinci M, et al. Tumor spheroid-based migration assays for evaluation of therapeutic agents. Methods Mol Biol. 2013;986:253–66.

    Article  CAS  PubMed  Google Scholar 

  18. Nunes AS, et al. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116(1):206–26.

    Article  CAS  PubMed  Google Scholar 

  19. Baranyai Z, et al. Cellular internalization and inhibition capacity of new anti-glioma peptide conjugates: physicochemical characterization and evaluation on various monolayer- and 3D-spheroid-based in vitro platforms. J Med Chem. 2021;64(6):2982–3005.

    Article  CAS  PubMed  Google Scholar 

  20. Chaddad H, et al. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization. Exp Cell Res. 2017;360(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  21. Boucherit N, Gorvel L, Olive D. 3D tumor models and their use for the testing of immunotherapies. Front Immunol. 2020;11:603640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tchoryk A, et al. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 2019;30(5):1371–84.

    Article  CAS  PubMed  Google Scholar 

  23. Singh MS, et al. An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale. 2020;12(3):1894–903.

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Pacheco S, O'Driscoll L. Pre-clinical in vitro models used in cancer research: results of a worldwide survey. Cancers (Basel). 2021;13(23):6033.

  25. Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021;21(1):152.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khan AQ. Animal Models in Cancer Drug Discovery || Role of 3D tissue engineering models for human cancer and drug development. Animal Models in Cancer Drug Discovery, pp 309–322.

  27. Bartosh TJ, Ylostalo JH. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol. 2014;28:2B 6 1-2B 6 23.

    Article  PubMed  Google Scholar 

  28. Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gebhard C, Gabriel C, Walter I. Morphological and immunohistochemical characterization of canine osteosarcoma spheroid cell cultures. Anat Histol Embryol. 2016;45(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  30. Amaral RLF, et al. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 2017;8:605.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bruningk SC, et al. 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments. Sci Rep. 2020;10(1):1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sirenko O, et al. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015;13(7):402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kessel S, et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol. 2017;22(4):454–65.

    Article  PubMed  Google Scholar 

  34. Kwapiszewska K, et al. A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip. 2014;14(12):2096–104.

    Article  CAS  PubMed  Google Scholar 

  35. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rolver MG, Elingaard-Larsen LO, Pedersen SF. Assessing cell viability and death in 3D spheroid cultures of cancer cells. J Vis Exp. 2019;(148):e59714.

  37. Hirschhaeuser F, et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  38. Van Zundert I, Fortuni B, Rocha S. From 2D to 3D cancer cell models-the enigmas of drug delivery research. nanomaterials (Basel). 2020;10(11):2236.

  39. Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. J Exp Clin Cancer Res. 2017;36(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sutherland RM, et al. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;18(5):491–5.

    Article  CAS  PubMed  Google Scholar 

  41. Abolhassani H, et al. Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine. PLoS ONE. 2023;18(2):e0282064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lazzari G, et al. Multicellular spheroid based on a triple co-culture: a novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 2018;78:296–307.

    Article  CAS  PubMed  Google Scholar 

  43. Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952;86(3):287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu S, Gao J. Invasiveness and metastasis of tumor spheroid aggregates of human giant cell carcinoma (lung clone strain PLA801-95D) in vitro and in vivo. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1991;13(5):353–8.

    CAS  PubMed  Google Scholar 

  45. Browning AP, Sharp JA, Murphy RJ, Gunasingh G, Lawson B, Burrage K, et al. Quantitative analysis of tumour spheroid structure. Elife. 2021;10:10:e73020.

  46. Crnogorac MD, et al. 3D HeLa spheroids as a model for investigating the anticancer activity of Biginelli-hybrids. Chem Biol Interact. 2021;345:109565.

    Article  CAS  PubMed  Google Scholar 

  47. Sermuksnyte A, Kantminiene K, Jonuskiene I, Tumosiene I, Petrikaite V. The effect of 1,2,4-Triazole-3-thiol derivatives bearing hydrazone moiety on cancer cell migration and growth of melanoma, breast, and pancreatic cancer spheroids. Pharmaceuticals (Basel). 2022;15(8):1026.

  48. Gupta P, Miller A, Olayanju A, Madhuri TK, Velliou E. A systematic comparative assessment of the response of ovarian cancer cells to the chemotherapeutic cisplatin in 3D Models of various structural and biochemical configurations-does one model type fit all? Cancers (Basel). 2022;14(5):1274.

  49. Varesano S, Zocchi MR, Poggi A. Zoledronate triggers Vdelta2 T cells to destroy and kill spheroids of colon carcinoma: quantitative image analysis of three-dimensional cultures. Front Immunol. 2018;9:998.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee J, Shin D, Roh JL. Development of an in vitro cell-sheet cancer model for chemotherapeutic screening. Theranostics. 2018;8(14):3964–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Azzarito G et al. Mammary epithelial and endothelial cell spheroids as a potential functional in vitro model for breast cancer research. J Vis Exp. 2021;(173).

  53. Dey M, et al. Studying tumor angiogenesis and cancer invasion in a three-dimensional vascularized breast cancer micro-environment. Adv Biol (Weinh). 2021;5(7):e2100090.

    Article  PubMed  Google Scholar 

  54. Vinci M, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mulholland T, et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep. 2018;8(1):14672.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Singh SK, et al. Critical role of three-dimensional tumorsphere size on experimental outcome. Biotechniques. 2020;69(5):333–8.

    Article  CAS  PubMed  Google Scholar 

  57. Patra B, et al. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep. 2016;6:21061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Casey RC, et al. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 2001;159(6):2071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Breslin S, O’Driscoll L. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget. 2016;7(29):45745–56.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bae Y, et al. Preparation and characterization of 3D human glioblastoma spheroids using an N-octanoyl glycol chitosan hydrogel. Int J Biol Macromol. 2021;185:87–97.

    Article  CAS  PubMed  Google Scholar 

  61. Mirab F, Kang YJ, Majd S. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS ONE. 2019;14(1):e0211078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bresciani G, et al. Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line. Front Endocrinol (Lausanne). 2019;10:682.

    Article  PubMed  Google Scholar 

  63. Xu X, et al. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials. 2012;33(35):9049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Q, et al. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J Biomol Screen. 2011;16(2):141–54.

    Article  CAS  PubMed  Google Scholar 

  65. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32.

    Article  CAS  PubMed  Google Scholar 

  66. Howes AL, et al. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. PLoS ONE. 2014;9(9):e108283.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Edwards K, Yao S, Pisano S, Feltracco V, Brusehafer K, Samanta S, et al. Hyaluronic acid-functionalized nanomicelles enhance SAHA efficacy in 3D endometrial cancer models. Cancers (Basel). 2021;13(16):4032.

  68. Sherman H, Rossi AE. A novel three-dimensional glioma blood-brain barrier model for high-throughput testing of tumoricidal capability. Front Oncol. 2019;9:351.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wanigasekara J, et al. Three-dimensional (3D) in vitro cell culture protocols to enhance glioblastoma research. PLoS ONE. 2023;18(2):e0276248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alves SR, et al. Characterization of glioblastoma spheroid models for drug screening and phototherapy assays. OpenNano. 2023;9:100116.

    Article  Google Scholar 

  71. Eilenberger C, et al. Effect of spheroidal age on sorafenib diffusivity and toxicity in a 3D HepG2 spheroid model. Sci Rep. 2019;9(1):4863.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sarisozen C, Abouzeid AH, Torchilin VP. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm. 2014;88(2):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yakavets I, Jenard S, Francois A, Maklygina Y, Loschenov V, Lassalle HP, et al. Stroma-rich co-culture multicellular tumor spheroids as a tool for photoactive drugs screening. J Clin Med. 2019;8(10):1686.

  74. Hagemann J, et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer Res. 2017;37(5):2201–10.

    Article  CAS  PubMed  Google Scholar 

  75. Raghavan S, et al. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7(13):16948–61.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Corning®1536-well. Corning® 1536-well black/clear round bottom ultra-low attachment spheroid microplate, with lid, sterile. [cited 2023 23rd July]; Available from: 4527 | Corning® 1536-well Black/Clear Round Bottom Ultra-low Attachment Spheroid Microplate, with Lid, Sterile | Corning.

  77. PrimeSurface®3D-Culture-Spheroid-plates. PrimeSurface® 3D culture spheroid plates: ultra-low attachment (ULA) plates. [cited 2023 8th July]; Available from: 356257 | Corning® Matrigel® Matrix - 3D Plate, 384-well, White/Clear Square Bottom, Phenol Red-Free, Individually Wrapped, with Lid, 5/Cs | Corning.

  78. Corning®384-well. Corning® 384-well Spheroid Microplates. [cited 2023 22nd July]; Available from: Corning® 384-well Spheroid Microplates | Corning.

  79. Sun Y, Hu J, Zhu M. in Emerging molecular mechanisms of cell cycle regulation in cancer: functions and potential applications. 2022, Frontiers in Oncology and Frontiers in Cell and Developmental Biology, p 168.

  80. Corning®96-well. Corning® 96-well black/clear round bottom ultra-low attachment spheroid microplate, with lid, sterile. 2023 [cited 2023 22nd July]; Available from: 4515 | Corning® 96-well Black/Clear Round Bottom Ultra-Low Attachment Spheroid Microplate, with Lid, Sterile | Corning.

  81. Corning®Elplasia®24-well. Corning® Elplasia® 24-well black/clear round bottom ultra-low attachment, microcavity plate, with lid. [cited 2023 23rd July]; Available from: 4441 | Corning® Elplasia® 24-well Black/Clear Round Bottom Ultra-Low Attachment, Microcavity Plate, with Lid | Corning.

  82. Corning®Elplasia®6-well. Corning® Elplasia® 6-well black/clear round bottom ultra-low attachment, microcavity plate, with lid. [cited 2023 24th July]; Available from: 4440 | Corning® Elplasia® 6-well Black/Clear Round Bottom Ultra-Low Attachment, Microcavity Plate, with Lid | Corning.

  83. Corning®Elplasia®96-well. Corning® Elplasia® 96-well black/clear round bottom ultra-low attachment, microcavity microplate, with lid. [cited 2023 19th July]; Available from: 4442 | Corning® Elplasia® 96-well Black/Clear Round Bottom Ultra-Low Attachment, Microcavity Microplate, with Lid | Corning.

  84. Corning®Elplasia®12KFlask. Corning® Elplasia® 12K flask. Available from: Corning® Elplasia® 12K Flask | Corning.

  85. Sherman H, Shyu J, Kennebunk M. Corning® Matrigel® Matrix-3D Plates for High Throughput 3D Assays. Available from: https://www.corning.com/catalog/cls/documents/application-notes/CLS-AN-572-A4.pdf

  86. Corning®Matrigel®Matrix-3D-Plate-384-well. Corning® Matrigel® Matrix - 3D plate, 384-well, black/clear square bottom, phenol red-free, individually wrapped, with lid, 5/Cs. [cited 2023 21st July]; Available from: 356256 | Corning® Matrigel® Matrix - 3D Plate, 384-well, Black/Clear Square Bottom, Phenol Red-Free, Individually Wrapped, with Lid, 5/Cs | Corning.

  87. Plate-384-well, C.M.M.-D. Corning® Matrigel® Matrix - 3D Plate, 384-well, White/Clear Square Bottom, Phenol Red-Free, Individually Wrapped, with Lid, 5/Cs. [cited 2023 8th July]; Available from: 356257 | Corning® Matrigel® Matrix - 3D Plate, 384-well, White/Clear Square Bottom, Phenol Red-Free, Individually Wrapped, with Lid, 5/Cs | Corning.

  88. Corning®Matrigel®Matrix-3D-Plate-96-well. Corning® Matrigel® Matrix - 3D plate, 96-well, phenol red-free, black/clear, individually wrapped, with lid, 1/Cs. [cited 2023 20th July]; Available from: 356259 | Corning® Matrigel® Matrix - 3D Plate, 96-well, Phenol Red-Free, Black/Clear, Individually Wrapped, with Lid, 1/Cs | Corning.

  89. Nunclon™Sphera™96-Well. Nunclon™ Sphera™ 96-well, nunclon sphera-treated, U-shaped-bottom microplate. [cited 2023 19th July]; Available from: Nunclon™ Sphera™ 96-Well, Nunclon Sphera-Treated, U-Shaped-Bottom Microplate (thermofisher.com).

  90. Hofmann S, et al. Patient-derived tumor spheroid cultures as a promising tool to assist personalized therapeutic decisions in breast cancer. Transl Cancer Res. 2022;11(1):134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gaarn L, Marwood T, Scott R, Carter S, Granchelli J, Neeley C. The Nunclon Sphera surface supports formation of three dimensional cancer spheroids in suspension. Available from: https://www.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/application-notes/thermo-scientific-sphera-cancer-application-note.pdf

  92. ThermoScientific™96-well. 96 well plate, sphera low-attachment surface, pack of 1. [cited 2023 19th July]; Available from: 96 Well Plate, Sphera Low-Attachment Surface, Pack of 1 (thermofisher.com)

  93. Nunclon™Sphera™Dishes. Nunclon™ Sphera™ Dishes. [cited 2023 19th July]; Available from: https://www.thermofisher.com/order/catalog/product/174943.

  94. Nunclon™Sphera™Flasks. Nunclon™ Sphera™ Flasks. [cited 2023 19th July]; Available from: Nunclon™ Sphera™ Flasks (thermofisher.com).

  95. Wardwell-Swanson J, et al. A framework for optimizing high-content imaging of 3D models for drug discovery. SLAS Discov. 2020;25(7):709–22.

    Article  PubMed  Google Scholar 

  96. Akura™384-Spheroid-Microplate. Akura™ 384 spheroid microplate [cited 2023 8th July]; Available from: https://shop.insphero.com/products/akura-384-spheroid-microplate-10-pack?pr_prod_strat=copurchase_transfer_learning&pr_rec_id=847ff397b&pr_rec_pid=7645112139937&pr_ref_pid=6917606047905&pr_seq=uniform.

  97. Akura™384-ImagePro. Akura™ 384 ImagePro. [cited 2023 8th July]; Available from: Akura™ 384 ImagePro (10/pack) – InSphero.

  98. Akura™96-Spheroid-Microplate. Akura™ 96 spheroid microplate. [cited 2023 10th July]; Available from: Akura™ 96 Spheroid Microplate (20/pack) – InSphero.

  99. Navis, A.R., Hanging drop tissue culture. Embryo Project Encyclopedia, 2012.

  100. Gutierrez L, et al. A hanging drop culture method to study terminal erythroid differentiation. Exp Hematol. 2005;33(10):1083–91.

    Article  CAS  PubMed  Google Scholar 

  101. Liu X et al. A novel SimpleDrop chip for 3D spheroid formation and anti-cancer drug assay. Micromachines (Basel). 2021;12(6).

  102. Zhang W, et al. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: how to reliably produce a biomimetic 3D model. Anal Biochem. 2016;515:47–54.

    Article  CAS  PubMed  Google Scholar 

  103. Shujaa Edin HY, et al. Recombinant human erythropoietin enhanced the cytotoxic effects of tamoxifen toward the spheroid MCF-7 breast cancer cells. Saudi J Biol Sci. 2021;28(9):5214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Low LTHTLE et al. A reliable and affordable 3D tumor spheroid model for natural product drug discovery: a case study of curcumin Prog Drug Discov Biomed Sci. 2019;1(1).

  105. Jeong Y, Tin A, Irudayaraj J. Flipped well-plate hanging-drop technique for growing three-dimensional tumors. Front Bioeng Biotechnol. 2022;10:898699.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez CE, et al. Autophagy protects from trastuzumab-induced cytotoxicity in HER2 overexpressing breast tumor spheroids. PLoS ONE. 2015;10(9):e0137920.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Monico DA, et al. Melanoma spheroid-containing artificial dermis as an alternative approach to in vivo models. Exp Cell Res. 2022;417(1):113207.

    Article  CAS  PubMed  Google Scholar 

  108. Raghavan S, et al. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Gynecol Oncol. 2015;138(1):181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kelm JM, et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  110. Li L, LaBarbera D. 3D high-content screening of organoids for drug discovery. Comprehensive Med Chem. 2017;III:2.

    Google Scholar 

  111. Akura™PLUS-Hanging-Drop-System. [cited 2023 25th July ]; Available from: https://shop.insphero.com/products/akura-plus-spheroid-hanging-drop-system.

  112. Lee G, et al. Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials. 2021;269:120529.

    Article  CAS  PubMed  Google Scholar 

  113. Rescigno F, Ceriotti L, Meloni M. Extra cellular matrix deposition and assembly in dermis spheroids. Clin Cosmet Investig Dermatol. 2021;14:935–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mohan S, et al. Assessing the predictive response of a simple and sensitive blood-based biomarker between estrogen-negative solid tumors. Adv Med Sci. 2020;65(2):424–8.

    Article  PubMed  Google Scholar 

  115. Pawlik TM, et al. Amino acid uptake and regulation in multicellular hepatoma spheroids. J Surg Res. 2000;91(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  116. Casciari JJ, Sotirchos SV, Sutherland RM. Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 1988;48(14):3905–9.

    CAS  PubMed  Google Scholar 

  117. Foster TH, et al. Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res. 1993;53(6):1249–54.

    CAS  PubMed  Google Scholar 

  118. Wigle JC, Sutherland RM. Increased thermoresistance developed during growth of small multicellular spheroids. J Cell Physiol. 1985;122(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  119. Ronen S, Degani H. Studies of the metabolism of human breast cancer spheroids by NMR. Magn Reson Med. 1989;12(2):274–81.

    Article  CAS  PubMed  Google Scholar 

  120. Erlichman C, Tannock IF. Growth and characterization of multicellular tumor spheroids of human bladder carcinoma origin. In Vitro Cell Dev Biol. 1986;22(8):449–56.

    Article  CAS  PubMed  Google Scholar 

  121. Mueller-Klieser RMSBSJBHGBBW. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46(10):5320–9.

    PubMed  Google Scholar 

  122. Bauman GS, et al. Effects of radiation on a three-dimensional model of malignant glioma invasion. Int J Dev Neurosci. 1999;17(5–6):643–51.

    Article  CAS  PubMed  Google Scholar 

  123. Deen DF, et al. Development of a 9L rat brain tumor cell multicellular spheroid system and its response to 1,3-bis(2-chloroethyl)-1-nitrosourea and radiation. J Natl Cancer Inst. 1980;64(6):1373–82.

    Article  CAS  PubMed  Google Scholar 

  124. Rofstad EK, Sutherland RM. Growth and radiation sensitivity of the MLS human ovarian carcinoma cell line grown as multicellular spheroids and xenografted tumours. Br J Cancer. 1989;59(1):28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sakthivel K, Hoorfar M, Kim K. High-throughput three-dimensional cellular platforms for screening biophysical microenvironmental signals. In: Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms. Elsevier; 2021. p. 125–52.

    Chapter  Google Scholar 

  127. Santos JM, et al. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther. 2015;6(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pinto DS, da Silva CL, Cabral JM. Scalable expansion of mesenchymal stem/stromal cells in bioreactors. A Focus on Hydrodynamic Characterization. 2019:537.

  129. Corning®Disposable-Spinner-Flasks. Corning® disposable spinner flasks. [cited 2023 1st August 2023]; Available from: https://ecatalog.corning.com/life-sciences/b2c/US/en/Bioprocess-and-Scale-up/Disposable-Spinner-Flasks/Corning%C2%AE-Disposable-Spinner-Flasks/p/corningDisposableSpinnerFlasks.

  130. Teale M, et al. Chemically defined, xeno-free expansion of human mesenchymal stem cells (hMSCs) on benchtop-scale using a stirred single-use bioreactor. Methods Mol Biol. 2022;2436:83–111.

    Article  CAS  PubMed  Google Scholar 

  131. Moreira JL, et al. Effect of viscosity upon hydrodynamically controlled natural aggregates of animal cells grown in stirred vessels. Biotechnol Prog. 1995;11(5):575–83.

    Article  CAS  PubMed  Google Scholar 

  132. Jossen V, Eibl R, Kraume M, Eibl D. Growth behavior of human adipose tissue-derived stromal/stem cells at small scale: numerical and experimental investigations. Bioengineering (Basel). 2018;5(4):106.

  133. Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics. 2018;10(4):267.

  134. Nielsen JB, et al. Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem. 2020;92(1):150–68.

    Article  CAS  PubMed  Google Scholar 

  135. Prince E, et al. Microfluidic arrays of breast tumor spheroids for drug screening and personalized cancer therapies. Adv Healthc Mater. 2022;11(1):e2101085.

    Article  PubMed  Google Scholar 

  136. Takeuchi T. Medical checking of the aged. 13. Orthopedic diseases (2). Hokenfu Zasshi. 1989;45(2):128–9.

    CAS  PubMed  Google Scholar 

  137. Sabhachandani P, et al. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip. 2016;16(3):497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Marimuthu M, et al. Multi-size spheroid formation using microfluidic funnels. Lab Chip. 2018;18(2):304–14.

    Article  CAS  PubMed  Google Scholar 

  139. Chen MC, Gupta M, Cheung KC. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices. 2010;12(4):647–54.

    Article  CAS  PubMed  Google Scholar 

  140. Au Ieong K et al. Investigation of drug cocktail effects on cancer cell-spheroids using a microfluidic drug-screening assay. Micromachines. 2017;8(6).

  141. Sun D, et al. A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluid Nanofluid. 2014;17(5):831–42.

    Article  CAS  Google Scholar 

  142. Lim W, Park S. A microfluidic spheroid culture device with a concentration gradient generator for high-throughput screening of drug efficacy. Molecules. 2018;23(12).

  143. Ziółkowska K, et al. Development of a three-dimensional microfluidic system for long-term tumor spheroid culture. Sens Actuators, B Chem. 2012;173:908–13.

    Article  Google Scholar 

  144. Chen Y, et al. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal Chim Acta. 2015;898:85–92.

    Article  CAS  PubMed  Google Scholar 

  145. Lim W, et al. Formation of size-controllable tumour spheroids using a microfluidic pillar array (muFPA) device. Analyst. 2018;143(23):5841–8.

    Article  CAS  PubMed  Google Scholar 

  146. Barisam M, Niavol FR, Kinj MA, Saidi MS, Ghanbarian H, Kashaninejad N. Enrichment of cancer stem-like cells by controlling oxygen, glucose and fluid shear stress in a microfluidic spheroid culture device. J Sci: Adv Mater Device. 2022;7(2):100439.

  147. Huang YL, et al. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Sci Rep. 2020;10(1):9648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee SI, Choi YY, Kang SG, Kim TH, Choi JW, Kim YJ, et al. 3D Multicellular tumor spheroids in a microfluidic droplet system for investigation of drug resistance. Polymers (Basel). 2022;14(18):3752.

  149. Lee JM, et al. Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng. 2020;6:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee SR, et al. U-IMPACT: a universal 3D microfluidic cell culture platform. Microsyst Nanoeng. 2022;8:126.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lee SW, et al. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Biotechnol Bioeng. 2019;116(11):3041–52.

    Article  CAS  PubMed  Google Scholar 

  152. Lunt SJ, et al. Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncol. 2008;4(6):793–802.

    Article  PubMed  Google Scholar 

  153. Milosevic M, Fyles A, Hill R. Interstitial fluid pressure in cervical cancer: guide to targeted therapy. Am J Clin Oncol. 2001;24(5):516–21.

    Article  CAS  PubMed  Google Scholar 

  154. Yeo SG, et al. Interstitial fluid pressure as a prognostic factor in cervical cancer following radiation therapy. Clin Cancer Res. 2009;15(19):6201–7.

    Article  CAS  PubMed  Google Scholar 

  155. Boucher Y, et al. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br J Cancer. 1997;75(6):829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res. 2014;6:317–28.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Aryasomayajula A, Bayat P, Rezai P, Selvaganapathy PR. Microfluidic devices and their applications. In: Bhushan B, edetor. Springer Handbook of Nanotechnology. Springer Handbooks. Berlin, Heidelberg: Springer; 2017. p.487–536.

  158. Sun Q, et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater Sci Eng. 2018;4(12):4425–33.

    Article  CAS  PubMed  Google Scholar 

  159. Tsai HF, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface. 2017;14(131):20170137.

  160. Uhl CG, Liu Y. Microfluidic device for expedited tumor growth towards drug evaluation. Lab Chip. 2019;19(8):1458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Alliedmarketresearch. Microfluidic devices market research, 2031. [cited 2023 20230812]; Available from: https://www.alliedmarketresearch.com/microfluidic-devices-market-A17085.

  162. Fortunebusinessinsights. Medical device / microfluidic devices market. [cited 2023 20230812]; Available from: https://www.fortunebusinessinsights.com/industry-reports/microfluidic-devices-market-101098.

  163. MERCK-MO4. CellASIC ONIX switching plate mammalian cells (4 chamber). [cited 2023 12th August]; Available from: https://www.sigmaaldrich.com/IN/en/product/mm/m04s035pk.

  164. eNUVIO. microfluidics. [cited 2023 12th August]; Available from: https://enuvio.com/product-tag/microfluidics/.

  165. Seleci DA, et al. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Adv. 2017;7(53):33378–84.

    Article  Google Scholar 

  166. Sivakumar H, et al. Multi-cell type glioblastoma tumor spheroids for evaluating sub-population-specific drug response. Front Bioeng Biotechnol. 2020;8:538663.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Blandin AF, et al. Glioma cell dispersion is driven by alpha5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett. 2016;376(2):328–38.

    Article  CAS  PubMed  Google Scholar 

  168. Casey RC, et al. β1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 2001;159(6):2071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Matsuda Y, et al. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol. 2010;43(4):211–7.

    Article  PubMed  Google Scholar 

  170. Smyrek I et al. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity. Biol Open. 2019;8(1).

  171. Shimazui T, et al. Role of complex cadherins in cell-cell adhesion evaluated by.pdf. Oncol Rep. 2004;11:357–60.

    CAS  PubMed  Google Scholar 

  172. Saias L, et al. Cell-cell adhesion and cytoskeleton tension oppose each other in regulating tumor cell aggregation. Cancer Res. 2015;75(12):2426–33.

    Article  CAS  PubMed  Google Scholar 

  173. Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids.pdf. Int J Oncol. 2007;31:1403–13.

    CAS  PubMed  Google Scholar 

  174. Weissenrieder JS, et al. The dopamine D2 receptor contributes to the spheroid formation behavior of U87 glioblastoma cells. Pharmacology. 2020;105(1–2):19–27.

    Article  CAS  PubMed  Google Scholar 

  175. Marie PJ, et al. Cadherin-mediated cell-cell adhesion and signaling in the skeleton. Calcif Tissue Int. 2014;94(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  176. Maitre JL, Heisenberg CP. Three functions of cadherins in cell adhesion. Curr Biol. 2013;23(14):R626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  178. Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31(6):1403–13.

    CAS  PubMed  Google Scholar 

  179. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982;92(1):79–91.

    Article  CAS  PubMed  Google Scholar 

  180. Galateanu B, et al. Impact of multicellular tumor spheroids as an in vivolike tumor model on anticancer drug response. Int J Oncol. 2016;48(6):2295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gomes A, et al. Evaluation by quantitative image analysis of anticancer drug activity on multicellular spheroids grown in 3D matrices. Oncol Lett. 2016;12(6):4371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Thakuri PS, et al. Quantitative size-based analysis of tumor spheroids and responses to therapeutics. Assay Drug Dev Technol. 2019;17(3):140–9.

    Article  CAS  PubMed  Google Scholar 

  183. Kulesza J, Pawłowska M, Augustin E. The influence of antitumor unsymmetrical bisacridines on 3D cancer spheroids growth and viability. Molecules. 2021;26(20):6262.

  184. Smith T, Affram K, Bulumko E, Agyare E. Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. J Nat Sci. 2018;4(10):e535.

  185. Akasov R, et al. Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Int J Pharm. 2016;506(1–2):148–57.

    Article  CAS  PubMed  Google Scholar 

  186. Yadav A, et al. Repurposing an antiepileptic drug for the treatment of glioblastoma. Pharm Res. 2022;39(11):2871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang J, et al. Anti-gastric cancer activity in three-dimensional tumor spheroids of bufadienolides. Sci Rep. 2016;6:24772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim CH, et al. Vertically coated graphene oxide micro-well arrays for highly efficient cancer spheroid formation and drug screening. Adv Healthc Mater. 2020;9(7):e1901751.

    Article  PubMed  Google Scholar 

  189. Ivanov DP, et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS ONE. 2014;9(8):e103817.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gendre DAJ, et al. Optimization of tumor spheroid model in mesothelioma and lung cancers and anti-cancer drug testing in H2052/484 spheroids. Oncotarget. 2021;12(24):2375–87.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lemmo S, et al. Optimization of aqueous biphasic tumor spheroid microtechnology for anti-cancer drug testing in 3D culture. Cell Mol Bioeng. 2014;7(3):344–54.

    Article  CAS  PubMed  Google Scholar 

  192. Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925.

    Article  CAS  PubMed  Google Scholar 

  193. Johnson-Arbor K, Dubey R. Doxorubicin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459232/.

  194. Carvalho C, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85.

    Article  CAS  PubMed  Google Scholar 

  195. Thorn CF, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moriwaki T, et al. Cytotoxicity of tirapazamine (3-amino-1,2,4-benzotriazine-1,4-dioxide)-induced DNA damage in chicken DT40 cells. Chem Res Toxicol. 2017;30(2):699–704.

    Article  CAS  PubMed  Google Scholar 

  197. Massaro F, Molica M, Breccia M. Ponatinib: a review of efficacy and safety. Curr Cancer Drug Targets. 2018;18(9):847–56.

    Article  CAS  PubMed  Google Scholar 

  198. Tyagi A, et al. Cervical cancer stem cells manifest radioresistance: association with upregulated AP-1 activity. Sci Rep. 2017;7(1):4781.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Ganesh K, Massague J. Targeting metastatic cancer. Nat Med. 2021;27(1):34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG. Cancer invasion and metastasis: molecular and cellular perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK164700/.

  201. Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Res. 2008;10 Suppl 1(Suppl 1):S2.

    Article  PubMed  Google Scholar 

  202. Stoletov K, Beatty PH, Lewis JD. Novel therapeutic targets for cancer metastasis. Expert Rev Anticancer Ther. 2020;20(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  203. Jones NP, et al. PLCgamma1 is essential for early events in integrin signalling required for cell motility. J Cell Sci. 2005;118(Pt 12):2695–706.

    Article  CAS  PubMed  Google Scholar 

  204. Tomas NM, et al. Akt and phospholipase Cgamma are involved in the regulation of growth and migration of MDA-MB-468 breast cancer and SW480 colon cancer cells when cultured with diabetogenic levels of glucose and insulin. BMC Res Notes. 2012;5:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Moser C, et al. Blocking heat shock protein-90 inhibits the invasive properties and hepatic growth of human colon cancer cells and improves the efficacy of oxaliplatin in p53-deficient colon cancer tumors in vivo. Mol Cancer Ther. 2007;6(11):2868–78.

    Article  CAS  PubMed  Google Scholar 

  206. Schmidt M, et al. The influence of Osmunda regalis root extract on head and neck cancer cell proliferation, invasion and gene expression. BMC Complement Altern Med. 2017;17(1):518.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sharudin NA, et al. Invasion and metastasis suppression by anti-neonatal Nav1.5 antibodies in breast cancer. Asian Pac J Cancer Prev. 2022;23(9):2953–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Xu X, et al. ITGA5 promotes tumor angiogenesis in cervical cancer. Cancer Med. 2023;12(10):11983–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Laborda-Illanes A, et al. Development of in vitro and in vivo tools to evaluate the antiangiogenic potential of melatonin to neutralize the angiogenic effects of VEGF and breast cancer cells: CAM assay and 3D endothelial cell spheroids. Biomed Pharmacother. 2023;157:114041.

    Article  CAS  PubMed  Google Scholar 

  210. Bayat N, et al. The anti-angiogenic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel: in 3D in vitro model. Asian Pac J Cancer Prev. 2018;19(9):2553–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Bhat SK, et al. P-I metalloproteinases and L-amino acid oxidases from Bothrops species inhibit angiogenesis. J Venom Anim Toxins Incl Trop Dis. 2021;27: e20200180.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Szade K, et al. Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo. Tumour Biol. 2016;37(2):2481–96.

    Article  CAS  PubMed  Google Scholar 

  213. Han M, et al. Enhanced percolation and gene expression in tumor hypoxia by PEGylated polyplex micelles. Mol Ther. 2009;17(8):1404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wortzel I, Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer. 2011;2(3):195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nitulescu GM, et al. The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 2018;53(6):2319–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ettrich TJ, Seufferlein T. Regorafenib. Recent Results Cancer Res. 2018;211:45–56.

    Article  CAS  PubMed  Google Scholar 

  217. Abdelgalil AA, Al-Kahtani HM, Al-Jenoobi FI. Erlotinib. Profiles Drug Subst Excip Relat Methodol. 2020;45:93–117.

    Article  CAS  PubMed  Google Scholar 

  218. Zoetemelk M, et al. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep. 2019;9(1):7103.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Expasy. Cellosaurus U-87MG Uppsala (CVCL_GP63). 12-Jan-2021 [cited 2022 22nd November]; Available from: https://www.cellosaurus.org/CVCL_GP63.

  221. Larjavaara S, et al. Incidence of gliomas by anatomic location. Neuro Oncol. 2007;9(3):319–25.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Belousov A, et al. The extracellular matrix and biocompatible materials in glioblastoma treatment. Front Bioeng Biotechnol. 2019;7:341.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. J Vis Exp. 2014;(89):51639.

  224. Wallberg F, Tenev T, Meier P. Analysis of apoptosis and necroptosis by fluorescence-activated cell sorting. Cold Spring Harb Protoc. 2016;2016(4):pdb prot087387.

    Article  PubMed  Google Scholar 

  225. Crowley LC, Marfell BJ, Waterhouse NJ. Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb Protoc. 2016;2016(9). https://doi.org/10.1101/pdb.prot087205.

  226. Crowley LC et al. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. 2016;2016(7). https://doi.org/10.1101/pdb.prot087163.

  227. Chen H, et al. Clinical significance of ALDH1 combined with DAPI expression in patients with esophageal carcinoma. Oncol Lett. 2017;14(4):4878–82.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Otto FJ. High-resolution analysis of nuclear DNA employing the fluorochrome DAPI. Methods Cell Biol. 1994;41:211–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Savita Roy, Principal, Daulat Ram College, University of Delhi, for providing constant support and lab facility throughout the investigation and Late Dr Amar Jyoti for the initial efforts to conceptualize.

Funding

The study was supported by research grants from Indian Council of Medical Research (ICMR-ICRC) to ACB (No.5/13/4/ACB/ICRC/2020/NCD-III), grant from Institution of Eminence University of Delhi (Ref. No./IoE/2021/12/FRP) to ACB, grant from CSIR-UGC to A. Chhokar [573(CSIR-UGC NET JUNE 2017)]; grant from CSIR to NA (09/045(1622)/2019-EMR-I); grant from CSIR to JY (09/045(1629)/2019-EMR-I); grant from CSIR-UGC to TT (764/(CSIR-UGC NET JUNE 2019); grant from CSIR to DJ (09/0045/(11635)/2021-EMR-1) and grant from CSIR to A. Chaudhary (09/0045(12901)/2022-EMR-1). This study was partly supported by the UGC-FRPS grant [Ref. F.30–400/2017(BSR F.D.Dy.No.5326] & SERB-ECR grant (Ref.ECR/2016/000897) to late Dr Amar Jyoti, Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ACB and AS. Data curation: AS and ACB. Formal analysis: AS, SL, JK, NG, DJ, TT, NA, AC, JY, and AC. Funding acquisition: ACB. Investigation: AS, SL, JK, NG, DJ, and ACB. Methodology: AS, SL, JK, NG, DJ, TT, NA, AC, JY, and AC. Project administration: ACB. Resources: ACB and AS. Supervision: ACB. Validation: ACB. Visualization: AS, DJ, TT, NA, and ACB. Writing original draft: AS and ACB. Review and editing: ACB.

Corresponding author

Correspondence to Alok Chandra Bharti.

Ethics declarations

Ethics approval and consent to participate

NA

Consent for publication

All authors have read the final manuscript and agreed to the publication.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senrung, A., Lalwani, S., Janjua, D. et al. 3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response. In vitro models 2, 219–248 (2023). https://doi.org/10.1007/s44164-023-00059-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-023-00059-8

Keywords

Navigation