Skip to main content

Advertisement

Log in

Somatic mutations of CASP3 gene in human cancers

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Failure of apoptosis is one of the hallmarks of cancer. As an execution-phase caspase, caspase-3 plays a crucial role during apoptosis. To explore the possibility that the genetic alterations of CASP3, which encodes caspase-3, might be involved in the development of human tumors, we analyzed the entire coding region and all splice sites of human CASP3 gene for the detection of somatic mutations in a series of 944 human tumors, including 165 stomach carcinomas, 95 colon carcinomas, 76 breast carcinomas, 80 hepatocellular carcinomas, 181 non-small cell lung cancers, 45 acute leukemias, 28 multiple myelomas, 12 medulloblastomas, 15 Wilms’ tumors, 12 renal cell carcinomas, 40 esophagus carcinomas, 33 urinary bladder carcinomas, 33 laryngeal carcinomas, and 129 non-Hodgkin lymphomas. Overall, we detected 14 somatic mutations of the CASP3 gene, including six missense and four silent mutations, two mutations in the introns, one mutation in the 5′-untranslated region, and one mutation in the 3′-untranslated region. The mutations were observed in four of 98 colon carcinomas (4.1%), four of 181 non-small cell lung cancers (2.2%), two of 129 non-Hodgkin lymphomas (1.6%), two of 165 stomach carcinomas (1.2%), one of 80 hepatocellular carcinomas (1.3%), and one of 28 multiple myelomas (3.6%). This is the first report on CASP3 gene mutations in human tumors; these data indicate that the CASP3 gene is occasionally mutated in human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F

Similar content being viewed by others

References

  • Colussi PA, Harvey NL, Shearwin-Whyatt LM, Kumar S (1998) Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. J Biol Chem 273:26566–26570

    Google Scholar 

  • Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Jeong SW, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125:708–715

    Google Scholar 

  • Kurokawa H, Nishio K, Fukumoto H, Tomonari A, Suzuki T, Saijo N (1999) Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol Rep 6:33–37

    Google Scholar 

  • Lee JY, Dong SM, Kim SY, Yoo NJ, Lee SH, Park WS (1998) A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch 433:305–309

    Google Scholar 

  • Lee SH, Shin MS, Park WS, Kim SY, Kim HS, Han JY, Park GS, Dong SM, Pi JH, Kim CS, Kim SH, Lee JY, Yoo NJ (1999) Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 18:3754–3760

    Google Scholar 

  • Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Google Scholar 

  • Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 39:1415–1430

    Google Scholar 

  • Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M (1999) Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 59:2995–3002

    Google Scholar 

  • Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN, Lee JH, Park JY, Jang JJ, Kim CW, Kim SH, Lee JY, Lee SH (2002) Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99:4094–4099

    Google Scholar 

  • Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Google Scholar 

  • Soung YH, Lee JW, Kim HS, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Park YG, Nam SW, Jeong SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2003) Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene 22:6104–6108

    Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Google Scholar 

  • Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (02-PJ1-PG10-20801–0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sug Hyung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soung, Y.H., Lee, J.W., Kim, S.Y. et al. Somatic mutations of CASP3 gene in human cancers. Hum Genet 115, 112–115 (2004). https://doi.org/10.1007/s00439-004-1129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1129-3

Keywords

Navigation