Skip to main content

Advertisement

Log in

Crucial Role of RLIP76 in Promoting Glycolysis and Tumorigenesis by Stabilization of HIF-1α in Glioma Cells Under Hypoxia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia is intimately associated with enhanced glycolysis in gliomas, and hypoxia-inducible factor 1α (HIF-1α) plays a critical role in this process. RLIP76 (Ral-interacting protein 76) functions as a multifunctional mediator and is aberrantly expressed in various malignant tumors, including glioma. However, the underlying mechanism of RLIP76 and HIF-1α in glioma glycolysis remains largely unclear. In the present study, we demonstrated that RLIP76 is a hypoxia-inducible molecule that contributes to facilitating glycolysis in glioma cells under hypoxic conditions. In addition, hypoxia-induced RLIP76 is a novel target of HIF-1α and enhances the two important HIF-1α-target glycolytic proteins glucose transporter type 1 (GLUT1) and lactate dehydrogenase A (LDHA) in hypoxia. Mechanistically, RLIP76 can directly bind to HIF-1α in the nucleus and regulate the stability of HIF-1α by alleviating HIF-1α ubiquitination and therefore activates GLUT1 and LDHA to accelerate glycolysis in hypoxia. Furthermore, the enhanced glycolysis is necessary for the role of RLIP76 to promote glioma development in vivo, confirming the ability of RLIP76 to regulate tumor cell glycolysis. Collectively, our results demonstrate a previously unappreciated function of RLIP76 in hypoxia-mediated glycolytic metabolism and implicate that RLIP76 might be a valuable therapeutic target for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AKT:

Protein kinase B

ATP:

Adenosine triphosphate

ECAR:

Extracellular acidification rate

FDR:

False discovery rate

GBM:

Glioblastoma

GLUT1:

Glucose transporter type 1

GO:

Gene ontology

GTP:

Guanosine triphosphate

HIF-1α:

Hypoxia-inducible factor 1α

HRE:

Hypoxia response element

Hsf-1:

Heat shock factor-1

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LDHA:

Lactate dehydrogenase A

References

  1. Bose S, Le A (2018) Glucose metabolism in cancer. Adv Exp Med Biol 1063:3–12. https://doi.org/10.1007/978-3-319-77736-8_1

    Article  CAS  PubMed  Google Scholar 

  2. Dong CG, Wu WK, Feng SY, Yu J, Shao JF, He GM (2013) Suppressing the malignant phenotypes of glioma cells by lentiviral delivery of small hairpin RNA targeting hypoxia-inducible factor-1alpha. Int J Clin Exp Pathol 6(11):2323–2332

    PubMed  PubMed Central  Google Scholar 

  3. Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389. https://doi.org/10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tang W, Long T, Li F, Peng C, Zhao S, Chen X, Su J (2021) HIF-1alpha may promote glycolysis in psoriasis vulgaris via upregulation of CD147 and GLUT1. Zhong Nan Da Xue Xue Bao Yi Xue Ban 46(4):333–344. https://doi.org/10.11817/j.issn.1672-7347.2021.200010

    Article  PubMed  Google Scholar 

  5. Sun R, Meng X, Pu Y, Sun F, Man Z, Zhang J, Yin L, Pu Y (2019) Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicol In Vitro 55:18–23. https://doi.org/10.1016/j.tiv.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Singhal SS, Nagaprashantha L, Singhal P, Singhal S, Singhal J, Awasthi S, Horne D (2017) RLIP76 inhibition: a promising developmental therapy for neuroblastoma. Pharm Res 34(8):1673–1682. https://doi.org/10.1007/s11095-017-2154-y

    Article  CAS  PubMed  Google Scholar 

  7. Mott HR, Owen D (2014) Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Biochem Soc Trans 42(1):52–58. https://doi.org/10.1042/BST20130231

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Qi Z, Yin H, Yang G (2019) Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1alpha-mediated regulation of apoptosis and autophagy. Theranostics 9(4):1096–1114. https://doi.org/10.7150/thno.29673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Q, Wang JY, Zhang XP, Lv ZW, Fu D, Lu YC, Hu GH, Luo C et al (2013) RLIP76 is overexpressed in human glioblastomas and is required for proliferation, tumorigenesis and suppression of apoptosis. Carcinogenesis 34(4):916–926. https://doi.org/10.1093/carcin/bgs401

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X, Xie L, Yang J et al (2018) ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol 53(3):1055–1068. https://doi.org/10.3892/ijo.2018.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang B, Li K, Wang H, Shen X, Zheng J (2020) Systemic chemotherapy promotes HIF-1alpha-mediated glycolysis and IL-17F pathways in cutaneous T-cell lymphoma. Exp Dermatol. https://doi.org/10.1111/exd.14133

    Article  PubMed  Google Scholar 

  12. Ren X, Su C (2020) Sphingosine kinase 1 contributes to doxorubicin resistance and glycolysis in osteosarcoma. Mol Med Rep 22(3):2183–2190. https://doi.org/10.3892/mmr.2020.11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herlevsen MC, Theodorescu D (2007) Mass spectroscopic phosphoprotein mapping of Ral binding protein 1 (RalBP1/Rip1/RLIP76). Biochem Biophys Res Commun 362(1):56–62. https://doi.org/10.1016/j.bbrc.2007.07.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagaprashantha LD, Singhal J, Li H, Warden C, Liu X, Horne D, Awasthi S, Salgia R et al (2018) 2′-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer. Oncotarget 9(26):18053–18068. https://doi.org/10.18632/oncotarget.24720

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS (2012) RLIP76 regulates PI3K/Akt signaling and chemo-radiotherapy resistance in pancreatic cancer. PLoS ONE 7(4):e34582. https://doi.org/10.1371/journal.pone.0034582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Zhang L, Cui Y, Zhang C, Chen H, Gu J, Qian J, Luo C (2020) Increased RLIP76 expression in IDH1 wildtype glioblastoma multiforme is associated with worse prognosis. Oncol Rep 43(1):188–200. https://doi.org/10.3892/or.2019.7394

    Article  CAS  PubMed  Google Scholar 

  17. Lenting K, Khurshed M, Peeters TH, van den Heuvel C, van Lith SAM, de Bitter T, Hendriks W, Span PN et al (2019) Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J 33(1):557–571. https://doi.org/10.1096/fj.201800907RR

    Article  CAS  PubMed  Google Scholar 

  18. Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65(3):999–1006

    Article  CAS  Google Scholar 

  19. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M et al (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21(13):2933–2942. https://doi.org/10.1093/bioinformatics/bti473

    Article  CAS  PubMed  Google Scholar 

  20. Ata-Abadi NS, Mowla SJ, Aboutalebi F, Dormiani K, Kiani-Esfahani A, Tavalaee M, Nasr-Esfahani MH (2020) Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS ONE 15(4):e0232357. https://doi.org/10.1371/journal.pone.0232357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu J, Stiehl DP, Setzer C, Wichmann D, Shinde DA, Rehrauer H, Hradecky P, Gassmann M et al (2011) Interaction of HIF and USF signaling pathways in human genes flanked by hypoxia-response elements and E-box palindromes. Mol Cancer Res 9(11):1520–1536. https://doi.org/10.1158/1541-7786.MCR-11-0090

    Article  CAS  PubMed  Google Scholar 

  22. Deveci HA, Akyuva Y, Nur G, Naziroglu M (2019) Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed Pharmacother 111:292–304. https://doi.org/10.1016/j.biopha.2018.12.077

    Article  CAS  PubMed  Google Scholar 

  23. Chen C, Shi Y, Li Y, He ZC, Zhou K, Zhang XN, Yang KD, Wu JR et al (2017) A glycolysis-based ten-gene signature correlates with the clinical outcome, molecular subtype and IDH1 mutation in glioblastoma. J Genet Genomics 44(11):519–530. https://doi.org/10.1016/j.jgg.2017.05.007

    Article  PubMed  Google Scholar 

  24. Wang Q, Qian J, Wang J, Luo C, Chen J, Hu G, Lu Y (2013) Knockdown of RLIP76 expression by RNA interference inhibits invasion, induces cell cycle arrest, and increases chemosensitivity to the anticancer drug temozolomide in glioma cells. J Neurooncol 112(1):73–82. https://doi.org/10.1007/s11060-013-1045-2

    Article  CAS  PubMed  Google Scholar 

  25. Singhal SS, Yadav S, Singhal J, Sahu M, Sehrawat A, Awasthi S (2008) Diminished drug transport and augmented radiation sensitivity caused by loss of RLIP76. FEBS Lett 582(23–24):3408–3414. https://doi.org/10.1016/j.febslet.2008.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noch E, Bookland M, Khalili K (2011) Astrocyte-elevated gene-1 (AEG-1) induction by hypoxia and glucose deprivation in glioblastoma. Cancer Biol Ther 11(1):32–39. https://doi.org/10.4161/cbt.11.1.13835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee S, Goldfinger LE (2014) RLIP76 regulates HIF-1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB J 28(9):4158–4168. https://doi.org/10.1096/fj.14-255711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014. https://doi.org/10.1128/MCB.22.20.7004-7014.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iommarini L, Porcelli AM, Gasparre G, Kurelac I (2017) Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol 7:286. https://doi.org/10.3389/fonc.2017.00286

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, Raissi TC, Pause A et al (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21(1):1–9. https://doi.org/10.1016/j.celrep.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  31. Yan M, Gingras MC, Dunlop EA, Nouet Y, Dupuy F, Jalali Z, Possik E, Coull BJ et al (2014) The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest 124(6):2640–2650. https://doi.org/10.1172/JCI71749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joshi S, Singh AR, Durden DL (2014) MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem 289(33):22785–22797. https://doi.org/10.1074/jbc.M114.587493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nieminen AL, Qanungo S, Schneider EA, Jiang BH, Agani FH (2005) Mdm2 and HIF-1alpha interaction in tumor cells during hypoxia. J Cell Physiol 204(2):364–369. https://doi.org/10.1002/jcp.20406

    Article  CAS  PubMed  Google Scholar 

  34. Pezzuto A, Carico E (2018) Role of HIF-1 in cancer progression: novel insights. A review Curr Mol Med 18(6):343–351. https://doi.org/10.2174/1566524018666181109121849

    Article  CAS  PubMed  Google Scholar 

  35. Kietzmann T, Mennerich D, Dimova EY (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol 4:11. https://doi.org/10.3389/fcell.2016.00011

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, Kim D, Park SW et al (2016) Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis. Nat Commun 7:10347. https://doi.org/10.1038/ncomms10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanghani NS, Haase VH (2019) Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv Chronic Kidney Dis 26(4):253–266. https://doi.org/10.1053/j.ackd.2019.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paltoglou SM, Roberts BJ (2005) Role of the von Hippel-Lindau tumour suppressor protein in the regulation of HIF-1alpha and its oxygen-regulated transactivation domains at high cell density. Oncogene 24(23):3830–3835. https://doi.org/10.1038/sj.onc.1208531

    Article  CAS  PubMed  Google Scholar 

  39. Mortezaee K (2020) Hypoxia induces core-to-edge transition of progressive tumoral cells: a critical review on differential yet corroborative roles for HIF-1alpha and HIF-2alpha. Life Sci 242:117145. https://doi.org/10.1016/j.lfs.2019.117145

    Article  CAS  PubMed  Google Scholar 

  40. Thomas JG, Veznedaroglu E (2020) Ketogenic diet for malignant gliomas: a review. Curr Nutr Rep 9(3):258–263. https://doi.org/10.1007/s13668-020-00332-2

    Article  PubMed  Google Scholar 

  41. Yuen CA, Asuthkar S, Guda MR, Tsung AJ, Velpula KK (2016) Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. CNS Oncol 5(2):101–108. https://doi.org/10.2217/cns-2015-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koukourakis M, Tsolou A, Pouliliou S, Lamprou I, Papadopoulou M, Ilemosoglou M, Kostoglou G, Ananiadou D et al (2017) Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide. Biochem Biophys Res Commun 491(4):932–938. https://doi.org/10.1016/j.bbrc.2017.07.138

    Article  CAS  PubMed  Google Scholar 

  43. Nie S, Li K, Huang Y, Hu Q, Gao X, Jie S (2015) miR-495 mediates metabolic shift in glioma cells via targeting Glut1. J Craniofac Surg 26(2):e155-158. https://doi.org/10.1097/SCS.0000000000001385

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Science Foundation of China (grant no. 81802489) and the Shanghai Natural Science Foundation (grant no. 19ZR1448900).

Author information

Authors and Affiliations

Authors

Contributions

C. Z. and Q. W. were responsible for designing the study and writing the manuscript. L. Z. and H. R. C. were responsible for the data analysis. J. Q. was responsible for editing the manuscript. J. L. Z. and C. L. were responsible for re-editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun Luo.

Ethics declarations

Ethics Approval and Consent to Participate

All the patients were informed of sample collection and usage. The tissue samples were collected and used in accordance with approval by the Specialty Committee on Ethics of Biomedicine Research, Shanghai Tongji University (PJ2015-011–08). Use of animal was approved by the Shanghai Tongji Hospital Animal Ethics Committee.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3077 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, C., Zhu, J. et al. Crucial Role of RLIP76 in Promoting Glycolysis and Tumorigenesis by Stabilization of HIF-1α in Glioma Cells Under Hypoxia. Mol Neurobiol 59, 6724–6739 (2022). https://doi.org/10.1007/s12035-022-02999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02999-w

Keywords

Navigation