Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

Abstract

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate [1]. The significance of this finding, later termed the Warburg effect, went unnoticed by the larger scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics which would later open the doors to new cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

3PO:

3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

AGL:

Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase

AKT:

Also known as PKB, protein kinase B

ATP:

Adenosine triphosphate

CP-320626:

5-Chloro-N-[(2S)-3-(4-fluorophenyl)-1-(4-hydroxypiperidin-1-yl)-1-oxopropan-2-yl]-1H-indole-2-carboxamide

F1,6-BP:

Fructose-1,6-bisphosphatase

F2,6-BP:

Fructose-2,6-bisphosphate

FX-11:

3-Dihydroxy-6-methyl-7-phenylmethyl-4-propylnaphthalene-1-carboxylic acid

G1P:

Glucose-1-phosphate

G6P:

Glucose-6-phosphate

GBE:

1,4-Alpha-glucan branching enzyme

GLUT:

Glucose transporter

GSK2:

Glycogen synthase kinase 2

GYS1:

Glycogen synthase 1

HIF-1α:

Hypoxia-inducible factor 1α

HK2:

Hexokinase 2

LDHA:

Lactate dehydrogenase A

mTOR:

Mechanistic target of rapamycin

NAD:

Nicotinamide adenine dinucleotide

PCK2:

Phosphoenolpyruvate carboxykinase 2

PCK1:

Phosphoenolpyruvate carboxykinase 1

PFK:

Phosphofructokinase

PFKFB3:

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PGM:

Phosphoglucomutase

PI3K:

Phosphoinositide 3-kinase

PPP:

Pentose phosphate pathway

PPP1R3C:

Protein phosphatase 1 regulatory subunit 3C

TCA:

Tricarboxylic acid

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TP53:

Tumor protein 53

UGP2:

UTP:glucose-1-P uridylyltransferase 2

VHL:

Von Hippel-Lindau

References

  1. Warburg, O. (1924). Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften, 12, 1131–1137.

    Article  CAS  Google Scholar 

  2. Warburg, O. (1928). Chemical constitution of respiration ferment. Science, 68(1767), 437–443.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper, G. M., & Hausman, R. E. (2009). The cell: A molecular approach (5th ed.). Washington, DC: ASM Press; Sinauer Associates. xix, 820 p.

    Google Scholar 

  4. Warburg, O., Wind, F., & Negelstein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.

    Article  CAS  PubMed  Google Scholar 

  6. Weinhouse, S. (1951). Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors. Cancer Research, 11, 585–591.

    PubMed  CAS  Google Scholar 

  7. Hay, N. (2016). Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nature Reviews Cancer, 16, 635–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine, 89(3), 205–212.

    Article  CAS  PubMed  Google Scholar 

  9. Semenza, G. L. (2010). HIF-1: Upstream and downstream of cancer metabolism. Current Opinion in Genetics & Development, 20(1), 51–56.

    Article  CAS  Google Scholar 

  10. Christofk, H. R., Vander Heiden, M., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., & Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.

    Article  CAS  PubMed  Google Scholar 

  11. Levine, A. J., & Puzio-Kuter, A. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009), 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  12. Rousset, M., Zweibaum, J., & Fogh, J. (1981). Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Research, 41(3), 1165–1170.

    CAS  PubMed  Google Scholar 

  13. Cheng, K. W., et al. (2012). Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Molecular Medicine, 4(2), 125–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guin, S., et al. (2014). Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. Journal of the National Cancer Institute, 106(5), dju062.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen, G.-M., et al. (2010). Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Letters, 584(20), 4366–4372.

    Article  CAS  PubMed  Google Scholar 

  16. Pelletier, J., et al. (2012). Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Frontiers in Oncology, 2, 18–18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zois, C. E., Favaro, E., & Harris, A. L. (2014). Glycogen metabolism in cancer. Biochemical Pharmacology, 92(1), 3–11.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Q., et al. (2011). Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. The Prostate, 71(8), 835–845.

    Article  CAS  PubMed  Google Scholar 

  19. Ros, S., & Schulze, A. (2012). Linking glycogen and senescence in cancer cells. Cell Metabolism, 16(6), 687–688.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, P., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10684–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan, M., et al. (2015). mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discovery, 1, 15016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, D. A., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3(94), 94ra70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amann, T., & Hellerbrand, C. (2009). GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 13(12), 1411–1427.

    Article  CAS  PubMed  Google Scholar 

  24. Marin-Valencia, I., et al. (2012). Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiology of Disease, 48(1), 92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sborov, D. W., Haverkos, B. M., & Harris, P. J. (2015). Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opinion on Investigational Drugs, 24(1), 79–94.

    Article  CAS  PubMed  Google Scholar 

  26. Heikkinen, S., et al. (1999). Hexokinase II-deficient: Mice prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. Journal of Biological Chemistry, 274(32), 22517–22523.

    Article  CAS  PubMed  Google Scholar 

  27. Clem, B., et al. (2008). Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Molecular Cancer Therapeutics, 7(1), 110–120.

    Article  CAS  PubMed  Google Scholar 

  28. Schoors, S., et al. (2014). Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metabolism, 19(1), 37–48.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, S., et al. (2017). Risk factors of post-operative severe hyperlactatemia and lactic acidosis following laparoscopic resection for pheochromocytoma. Scientific Reports, 7(1), 403.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Doherty, J. R., & Cleveland, J. L. (2013). Targeting lactate metabolism for cancer therapeutics. The Journal of Clinical Investigation, 123(9), 3685–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koukourakis, M. I., et al. (2003). Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. British Journal of Cancer, 89(5), 877–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koukourakis, M. I., et al. (2009). Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology, 77(5), 285–292.

    Article  CAS  PubMed  Google Scholar 

  33. Koukourakis, M. I., et al. (2005). Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clinical & Experimental Metastasis, 22(1), 25–30.

    Article  CAS  Google Scholar 

  34. Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu, Y., et al. (2001). Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochemical Pharmacology, 62(1), 81–89.

    Article  CAS  PubMed  Google Scholar 

  36. Vander Jagt, D. L., Deck, L. M., & Royer, R. E. (2000). Gossypol: Prototype of inhibitors targeted to dinucleotide folds. Current Medicinal Chemistry, 7(4), 479–498.

    Article  CAS  PubMed  Google Scholar 

  37. Manerba, M., et al. (2012). Galloflavin (CAS 568-80-9): A novel inhibitor of lactate dehydrogenase. ChemMedChem, 7(2), 311–317.

    Article  CAS  PubMed  Google Scholar 

  38. Granchi, C., et al. (2011). Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. Journal of Medicinal Chemistry, 54(6), 1599–1612.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, W.-N. P., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91(12), 2094–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Bose, S., Le, A. (2018). Glucose Metabolism in Cancer. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_1

Download citation

Publish with us

Policies and ethics