Skip to main content
Log in

Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats—a Study Evaluating Neuroinflammation and Mitochondrial Functions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Imeglimin is a novel oral antidiabetic drug modulating mitochondrial functions. However, neuroprotective effects of this drug have not been investigated. The aim of this study was to investigate effects of imeglimin against ischemia-induced brain damage and neurological deficits and whether it acted via inhibition of mitochondrial permeability transition pore (mPTP) and suppression of microglial activation. Ischemia in rats was induced by permanent middle cerebral artery occlusion (pMCAO) for 48 h. Imeglimin (135 μg/kg/day) was injected intraperitoneally immediately after pMCAO and repeated after 24 h. Immunohistochemical staining was used to evaluate total numbers of neurons, astrocytes, and microglia as well as interleukin-10 (IL-10) producing cells in brain slices. Respiration of isolated brain mitochondria was assessed using high-resolution respirometry. Assessment of ionomycin-induced mPTP opening in intact cultured primary rat neuronal, astrocytic, and microglial cells was performed using fluorescence microscopy. Treatment with imeglimin significantly decreased infarct size, brain edema, and neurological deficits after pMCAO. Moreover, imeglimin protected against pMCAO-induced neuronal loss as well as microglial proliferation and activation, and increased the number of astrocytes and the number of cells producing anti-inflammatory cytokine IL-10 in the ischemic hemisphere. Imeglimin in vitro acutely prevented mPTP opening in cultured neurons and astrocytes but not in microglial cells; however, treatment with imeglimin did not prevent ischemia-induced mitochondrial respiratory dysfunction after pMCAO. This study demonstrates that post-stroke treatment with imeglimin exerts neuroprotective effects by reducing infarct size and neuronal loss possibly via the resolution of neuroinflammation and partly via inhibition of mPTP opening in neurons and astrocytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ara-c:

β-d

Arabinofuranoside

BSA:

Bovine serum albumin

Cat:

Carboxy-atractiloside

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

CGC:

Cerebellar granule cell

CsA:

Cyclosporin A

DIV:

Day in vitro

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

EGTA:

3,12-Bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecane-1,14-dioic acid

FBS:

Fetal bovine serum

GFAP:

Glial fibrillary acidic protein

HBSS:

Hank’s Balanced Salt Solution

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

Iba-1:

Ionized calcium-binding adaptor molecule 1

IL-10:

Interleukin-10

LEAK:

Proton leak-associated respiration

mPTP:

Mitochondrial permeability transition pore

NeuN:

Neuronal nuclear antigen

OCRs:

Oxygen consumption rates

PBS:

Phosphate-buffered saline

PEG300:

Polyethylene glycol 300

PFA:

Paraformaldehyde

PM:

Pyruvate, malate

pMCAO:

Permanent middle cerebral artery occlusion

PMG:

Pyruvate, malate, glutamate

ROS:

Reactive oxygen species

SEM:

Standard error of the mean

Succ:

Succinate

TTC:

2,3,5-Triphenyltetrazolium chloride

References

  1. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA et al (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 1:e259–e281

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Xu S, Wang P, Wang W (2015) Transient mitochondrial permeability transition mediates excitotoxicity in glutamate-sensitive NSC34D motor neuron-like cells. Exp Neurol 271:122–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Javadov S, Kuznetsov A (2013) Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front Physiol 4:76

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19:736–741

    Article  CAS  PubMed  Google Scholar 

  8. Forsse A, Nielsen TH, Nygaard KH, Nordström CH, Gramsbergen JB, Poulsen FR (2019) Cyclosporin A ameliorates cerebral oxidative metabolism and infarct size in the endothelin-1 rat model of transient cerebral ischaemia. Sci Rep 9:1–8

    Article  CAS  Google Scholar 

  9. Nighoghossian N, Berthezène Y, Mechtouff L, Derex L, Cho TH, Ritzenthaler T et al (2015) Cyclosporine in acute ischemic stroke. Neurology 84:2216–2223

    Article  CAS  PubMed  Google Scholar 

  10. Detaille D, Vial G, Borel AL, Cottet-Rouselle C, Hallakou-Bozec S, Bolze S et al (2016) Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Dis 2:1–8

    Google Scholar 

  11. Li V, Bi X, Szelemej P, Kong J. (2012) Delayed neuronal death in ischemic stroke: molecular pathways. Adv Preclin Study Ischemic Stroke.

  12. Simon R, Griffiths T, Evans M, Swan J, Meldrum B (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metab 4:350–361

    Article  CAS  PubMed  Google Scholar 

  13. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272

    Article  CAS  PubMed  Google Scholar 

  17. Neher JJ, Neniskyte U, Zhao J-W, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    Article  CAS  PubMed  Google Scholar 

  18. Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellivol M, Brown GC (2021) Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem 158(3):621–639

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad M, Dar N, Bhat Z, Hussain A, Shah A, Liu H et al (2014) Inflammation in ischemic stroke: mechanisms, consequences and possible drug targets. CNS Neurol Disord Drug Targets 13:1378–1396

    Article  CAS  PubMed  Google Scholar 

  20. Kawabori M, Yenari MA (2015) The role of the microglia in acute CNS injury. Metab Brain Dis 30:381–392

    Article  CAS  PubMed  Google Scholar 

  21. Fouqueray P, Leverve X, Fontaine E, Baquié M, Wollheim C. (2011) Imeglimin - a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab 02.

  22. Skemiene K, Rekuviene E, Jekabsone A, Cizas P, Morkuniene R, Borutaite V (2020) Comparison of effects of metformin, phenformin, and inhibitors of mitochondrial complex i on mitochondrial permeability transition and ischemic brain injury. Biomolecules 10:1–17

    Article  CAS  Google Scholar 

  23. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S et al (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142

    Article  CAS  PubMed  Google Scholar 

  24. Zemgulyte G, Tanaka S, Hide I, Sakai N, Pampuscenko K, Borutaite V et al (2021) Evaluation of the effectiveness of post-stroke metformin treatment using permanent middle cerebral artery occlusion in rats. Pharmaceuticals (Basel) 14:132

    Article  CAS  Google Scholar 

  25. Zhu XC, Jiang T, Zhang QQ, Cao L, Tan MS, Wang HF et al (2015) Chronic metformin preconditioning provides neuroprotection via suppression of NF-κB-mediated inflammatory pathway in rats with permanent cerebral ischemia. Mol Neurobiol 52:375–385

    Article  CAS  PubMed  Google Scholar 

  26. Vial G, Chauvin MA, Bendridi N, Durand A, Meugnier E, Madec AM et al (2015) Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes 64:2254–2264

    Article  CAS  PubMed  Google Scholar 

  27. Vial G, Lamarche F, Cottet-Rousselle C, Hallakou-Bozec S, Borel AL, Fontaine E (2021) The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells. Endocrinol Diabetes Metab 4:e00211

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pampuscenko K, Morkuniene R, Sneideris T, Smirnovas V, Budvytyte R, Valincius G et al (2020) Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. J Neurochem 154:316–329

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy KD, De Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  31. Boyko M, Ohayon S, Goldsmith T, Novack L, Novack V, Perry ZH et al (2011) Morphological and neuro-behavioral parallels in the rat model of stroke. Behav Brain Res 223:17–23

    Article  PubMed  Google Scholar 

  32. Kuts R, Frank D, Gruenbaum BF, Grinshpun J, Melamed I, Knyazer B et al (2019) A novel method for assessing cerebral edema, infarcted zone and blood-brain barrier breakdown in a single post-stroke rodent brain. Front Neurosci 13:1105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  34. Piepke M, Clausen BH, Ludewig P, Vienhues JH, Bedke T, Javidi E et al (2021) Interleukin-10 improves stroke outcome by controlling the detrimental interleukin-17A response. J Neuroinflammation 18:1–16

    Article  CAS  Google Scholar 

  35. Fouda AY, Kozak A, Alhusban A, Switzer JA, Fagan SC (2013) Anti-inflammatory IL-10 is upregulated in both hemispheres after experimental ischemic stroke: hypertension blunts the response. Exp Transl Stroke Med 5:1–7

    Article  CAS  Google Scholar 

  36. Takano T, Oberheim N, Cotrina M, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12

    Article  PubMed  Google Scholar 

  37. Andrabi SS, Parvez S, Tabassum H (2020) Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma 257:335–343

    Article  CAS  PubMed  Google Scholar 

  38. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  CAS  PubMed  Google Scholar 

  39. Nedelmann M, Wilhelm-Schwenkmezger T, Alessandri B, Heimann A, Schneider F, Eicke MB et al (2007) Cerebral embolic ischemia in rats: correlation of stroke severity and functional deficit as important outcome parameter. Brain Res 1130:188–196

    Article  CAS  PubMed  Google Scholar 

  40. Toung TJK, Traystman RJ, Hurn PD (1998) Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke 29:1666–1670

    Article  CAS  PubMed  Google Scholar 

  41. Fiskum G, Murphy AN, Beal MF (2016) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369. https://doi.org/10.1097/00004647-199904000-00001

    Article  Google Scholar 

  42. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y et al (2020) Mitochondrial MPTP: a novel target of ethnomedicine for stroke treatment by apoptosis inhibition. Front Pharmacol 0:352

    Article  CAS  Google Scholar 

  44. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  PubMed  Google Scholar 

  45. Fakharnia F, Khodagholi F, Dargahi L, Ahmadiani A (2017) Prevention of cyclophilin D-mediated mPTP opening using cyclosporine-A alleviates the elevation of necroptosis, autophagy and apoptosis-related markers following global cerebral ischemia-reperfusion. J Mol Neurosci 61:52–60

    Article  CAS  PubMed  Google Scholar 

  46. Cho T-H, Aguettaz P, Campuzano O, Charriaut-Marlangue C, Riou A, Berthezène Y et al (2012) Pre- and post-treatment with cyclosporine a in a rat model of transient focal cerebral ischaemia with multimodal MRI screening. Int J Stroke 8:669–674. https://doi.org/10.1111/j1747-4949201200849X

    Article  PubMed  Google Scholar 

  47. Ten V, Galkin A (2019) Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A hypothesis. Mol Cell Neurosci 100:103408

    Article  CAS  PubMed  Google Scholar 

  48. Lachaux M, Soulié M, Hamzaoui M, Bailly A, Nicol L, Rémy-Jouet I et al (2020) Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. Endocrinol Diabetes Metab 3:e00128

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L et al (2019) STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4:e131355

    Article  PubMed Central  Google Scholar 

  50. Surugiu R, Catalin B, Dumbrava D, Gresita A, Olaru DG, Hermann DM et al (2019) Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury. Neural Plast 2019:1071036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26

    Article  CAS  PubMed  Google Scholar 

  53. Shi QJ, Wang H, Liu ZX, Fang SH, Song XM, Lu YB et al (2015) HAMI 3379, a CysLT2R antagonist, dose- and time-dependently attenuates brain injury and inhibits microglial inflammation after focal cerebral ischemia in rats. Neuroscience 291:53–69

    Article  CAS  PubMed  Google Scholar 

  54. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG et al (2001) Interleukin-10 in the brain. Crit Rev Immunol 21:427–449

    Article  CAS  PubMed  Google Scholar 

  55. Baseler WA, Davies LC, Quigley L, Ridnour LA, Weiss JM, Hussain SP et al (2016) Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production. Redox Biol 10:12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7

    Article  CAS  PubMed  Google Scholar 

  57. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120

    Article  CAS  PubMed  Google Scholar 

  58. Susarla BTS, Villapol S, Yi J-H, Geller HM, Symes AJ (2014) Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice. ASN Neuro 6:159–170

    Article  CAS  PubMed  Google Scholar 

  59. Becerra-Calixto A, Cardona-Gómez GP (2017) The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 10:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH-C et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Calì C, Tauffenberger A, Magistretti P (2019) The strategic location of glycogen and lactate: from body energy reserve to brain plasticity. Front Cell Neurosci 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat Cell Biol 11:747–752

    Article  CAS  PubMed  Google Scholar 

  63. Brown A, Ransom B (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  64. Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS et al (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79:74–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Dainius Pauza and Dr. Kristina Rysevaite-Kyguoliene from Lithuanian University of Health Sciences, the Institute of Anatomy, for opportunity to use their facilities. We also wish to thank Ieva Navickaite from Lithuanian University of Health Sciences, Department of Neurology, for her help.

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon request.

Funding

This study has received funding from European Social Fund (project no. 09.3.3-LMT-K-712-01-0131) under grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Contributions

Gintare Zemgulyte, Daiva Rastenyte, and Vilmante Borutaite designed the research. Gintare Zemgulyte, Danielius Umbrasas, Ramune Grigaleviciute, Katryna Pampuscenko, Silvija Jankeviciute, and Paulius Cicas performed experiments. Gintare Zemgulyte, Danielius Umbrasas, Ramune Grigaleviciute, Katryna Pampuscenko, Silvija Jankeviciute, Paulius Cizas, Daiva Rastenyte, and Vilmante Borutaite analyzed data, wrote the first draft of the manuscript, and edited the manuscript. Daiva Rastenyte and Vilmante Borutaite supervised the design and completion of the experiments. Gintare Zemgulyte, Danielius Umbrasas, Ramune Grigaleviciute, Katryna Pampuscenko, Silvija Jankeviciute, Paulius Cizas, Daiva Rastenyte, and Vilmante Borutaite wrote and edited the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gintare Zemgulyte.

Ethics declarations

Ethics Approval and Consent to Participate

The study was conducted according to EU Directive 2010/63/EU for animal experiments and the Republic of Lithuania law on the care, keeping, and use of experimental animals (approved by Lithuanian State Food and Veterinary Service, ethical approval no. B6 (1.9) - 855 and no. G2-79).

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemgulyte, G., Umbrasas, D., Cizas, P. et al. Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats—a Study Evaluating Neuroinflammation and Mitochondrial Functions. Mol Neurobiol 59, 2977–2991 (2022). https://doi.org/10.1007/s12035-022-02765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02765-y

Keywords

Navigation