Skip to main content

Advertisement

Log in

Effect of m-Trifluoromethyl-diphenyl diselenide on the Pain–Depression Dyad Induced by Reserpine: Insights on Oxidative Stress, Apoptotic, and Glucocorticoid Receptor Modulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic pain and depression often coexist sharing common pathological mechanisms, and available analgesics and antidepressants have demonstrated limited clinical efficacy. Evidence has demonstrated that neuronal oxidative stress, apoptosis, and also glucocorticoid receptor dysregulation facilitate the occurrence and development of both chronic pain and depression. This study evaluated the effect of the organoselenium compound m-trifluoromethyl-diphenyl diselenide [(m–CF3–PhSe)2] in the pain–depression comorbidity induced by reserpine. Mice were treated with reserpine 0.5 mg/kg for 3 days (intraperitoneal, once a day), and in the next 2 days, they were treated with (m–CF3–PhSe)2 10 mg/kg (intragastric, once a day). Thirty minutes after the last administration of (m–CF3–PhSe)2, mice were subjected to the behavioral testing. (m–CF3–PhSe)2 treatment reverted the reserpine-increased thermal hyperalgesia and depressive-like behavior observed in the hot-plate test and forced swimming test, respectively. Reserpine provoked a decrease of crossings and rearings in the open-field test, while (m–CF3–PhSe)2 presented a tendency to normalize these parameters. Reserpine and/or (m–CF3–PhSe)2 treatments did not alter the locomotor activity of mice observed in the rota-rod test. These effects could be related to modulation of oxidative stress, apoptotic pathway, and glucocorticoid receptors, once (m–CF3–PhSe)2 normalized thiobarbituric acid reactive substances and 4-hydroxynonenal modified protein levels, markers of lipoperoxidation, poly(ADP-ribose) polymerase cleaved/total ratio, and glucocorticoid receptor levels increased by reserpine in the hippocampus. Considering that pain–depression dyad is a complex state of difficult treatment, this organoselenium compound could raise as an interesting alternative to treat pain–depression condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Villela MM (2012) Glossary of health sciences, 1st edn. Editora Ciência Moderna Ltda, Rio de Janeiro

    Google Scholar 

  2. Sheng J, Liu S, Wang Y, Cui R, Zhang X (2017) The link between depression and chronic pain: neural mechanisms in the brain. Neural Plast 2017:9724371. https://doi.org/10.1155/2017/9724371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9(8):807–819. https://doi.org/10.1016/S1474-4422(10)70143-5

    Article  PubMed  Google Scholar 

  4. Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23(1):1–21. https://doi.org/10.1037/a0038550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bagis S, Tamer L, Sahin G, Bilgin R, Guler H, Ercan B, Erdogan C (2005) Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int 25(3):188–190. https://doi.org/10.1007/s00296-003-0427-8

    Article  CAS  PubMed  Google Scholar 

  6. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2010) Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J Affect Disord 125(1–3):287–294. https://doi.org/10.1016/j.jad.2009.12.014

    Article  CAS  PubMed  Google Scholar 

  7. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carrasco C, Naziroglu M, Rodriguez AB, Pariente JA (2018) Neuropathic pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol 9:95. https://doi.org/10.3389/fphys.2018.00095

    Article  PubMed  PubMed Central  Google Scholar 

  9. Szebeni A, Szebeni K, DiPeri TP, Johnson LA, Stockmeier CA, Crawford JD, Chandley MJ, Hernandez LJ et al (2017) Elevated DNA oxidation and DNA repair enzyme expression in brain white matter in major depressive disorder. Int J Neuropsychopharmacol 20(5):363–373. https://doi.org/10.1093/ijnp/pyw114

    Article  CAS  PubMed  Google Scholar 

  10. Komirishetty P, Areti A, Gogoi R, Sistla R, Kumar A (2016) Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain. Neural Regen Res 11(10):1545–1548. https://doi.org/10.4103/1673-5374.193222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36(3):415–425. https://doi.org/10.1016/j.psyneuen.2010.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Lim G, Zeng Q, Sung B, Ai Y, Guo G, Yang L, Mao J (2004) Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci 24(39):8595–8605. https://doi.org/10.1523/JNEUROSCI.3058-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruning CA, Gai BM, Soares SM, Martini F, Nogueira CW (2014) Serotonergic systems are implicated in antinociceptive effect of m-trifluoromethyl diphenyl diselenide in the mouse glutamate test. Pharmacol Biochem Behav 125:15–20. https://doi.org/10.1016/j.pbb.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Bruning CA, Martini F, Soares SM, Sampaio TB, Gai BM, Duarte MM, Nogueira CW (2015) m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model. Prog Neuropsychopharmacol Biol Psychiatry 63:35–46. https://doi.org/10.1016/j.pnpbp.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  15. Bruning CA, Souza AC, Gai BM, Zeni G, Nogueira CW (2011) Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems. Eur J Pharmacol 658(2–3):145–149. https://doi.org/10.1016/j.ejphar.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  16. Bruning CA, Martini F, Soares SM, Savegnago L, Sampaio TB, Nogueira CW (2015) Depressive-like behavior induced by tumor necrosis factor-alpha is attenuated by m-trifluoromethyl-diphenyl diselenide in mice. J Psychiatr Res 66–67:75–83. https://doi.org/10.1016/j.jpsychires.2015.04.019

    Article  PubMed  Google Scholar 

  17. Martins CC, Rosa SG, Recchi AMS, Nogueira CW, Zeni G (2020) m-Trifluoromethyl-diphenyl diselenide (m–CF3–PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 98:109803. https://doi.org/10.1016/j.pnpbp.2019.109803

    Article  CAS  PubMed  Google Scholar 

  18. Rosa SG, Pesarico AP, Tagliapietra CF, da Luz SC, Nogueira CW (2017) Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: a compound devoid of tolerance and withdrawal syndrome. J Psychopharmacol 31(9):1250–1262. https://doi.org/10.1177/0269881117724353

    Article  CAS  PubMed  Google Scholar 

  19. Bruning CA, Prigol M, Roehrs JA, Nogueira CW, Zeni G (2009) Involvement of the serotonergic system in the anxiolytic-like effect caused by m-trifluoromethyl-diphenyl diselenide in mice. Behav Brain Res 205(2):511–517. https://doi.org/10.1016/j.bbr.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  20. Prigol M, Bruning CA, Godoi B, Nogueira CW, Zeni G (2009) m-Trifluoromethyl-diphenyl diselenide attenuates pentylenetetrazole-induced seizures in mice by inhibiting GABA uptake in cerebral cortex slices. Pharmacol Rep 61(6):1127–1133

    Article  CAS  PubMed  Google Scholar 

  21. Magni DV, Bruning CA, Gai BM, Quines CB, Rosa SG, Fighera MR, Nogueira CW (2012) m-Trifluoromethyl diphenyl diselenide attenuates glutaric acid-induced seizures and oxidative stress in rat pups: involvement of the gamma-aminobutyric acidergic system. J Neurosci Res 90(9):1723–1731. https://doi.org/10.1002/jnr.23070

    Article  CAS  PubMed  Google Scholar 

  22. Segat HJ, Martini F, Barcelos RCS, Bruning CA, Nogueira CW, Burger ME (2016) m-Trifluoromethyl-diphenyldiselenide as a pharmacological tool to treat preference symptoms related to AMPH-induced dependence in rats. Prog Neuropsychopharmacol Biol Psychiatry 66:1–7. https://doi.org/10.1016/j.pnpbp.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  23. Bruning CA, Prigol M, Roehrs JA, Zeni G, Nogueira CW (2010) Evidence for the involvement of mu-opioid and delta-opioid receptors in the antinociceptive effect caused by oral administration of m-trifluoromethyl-diphenyl diselenide in mice. Behav Pharmacol 21(7):621–626. https://doi.org/10.1097/FBP.0b013e32833e7e6d

    Article  CAS  PubMed  Google Scholar 

  24. Araujo PCO, Sari MHM, Jardim NS, Jung JTK, Bruning CA (2020) Effect of m-trifluoromethyl-diphenyl diselenide on acute and subchronic animal models of inflammatory pain: behavioral, biochemical and molecular insights. Chem Biol Interact 317:108941. https://doi.org/10.1016/j.cbi.2020.108941

    Article  CAS  PubMed  Google Scholar 

  25. Prigol M, Bruning CA, Zeni G, Nogueira CW (2009) Protective effect of disubstituted diaryl diselenides on cerebral oxidative damage caused by sodium nitroprusside. Biochem Eng J 45(2):94–99. https://doi.org/10.1016/j.bej.2009.02.015

    Article  CAS  Google Scholar 

  26. Bilska A, Dubiel M, Sokolowska-Jezewicz M, Lorenc-Koci E, Wlodek L (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146(4):1758–1771. https://doi.org/10.1016/j.neuroscience.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Paulmier C (1986) Selenium reagents & intermediates in organic synthesis, vol 4, 1st edn. In: Baldwin JE (ed) Pergamon

  28. Arora V, Kuhad A, Tiwari V, Chopra K (2011) Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 36(10):1570–1581. https://doi.org/10.1016/j.psyneuen.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  29. Sousa FSS, Birmann PT, Baldinotti R, Fronza MG, Balaguez R, Alves D, Bruning CA, Savegnago L (2018) alpha- (phenylselanyl) acetophenone mitigates reserpine-induced pain-depression dyad: behavioral, biochemical and molecular docking evidences. Brain Res Bull 142:129–137. https://doi.org/10.1016/j.brainresbull.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  30. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57(2–3):201–210. https://doi.org/10.1016/0014-2999(79)90366-2

    Article  CAS  PubMed  Google Scholar 

  31. Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10(7):519–529. https://doi.org/10.1038/nrn2652

    Article  CAS  PubMed  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  34. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp 97:e52587. https://doi.org/10.3791/52587

  35. Gunn A, Bobeck EN, Weber C, Morgan MM (2011) The influence of non-nociceptive factors on hot-plate latency in rats. J Pain 12(2):222–227. https://doi.org/10.1016/j.jpain.2010.06.011

    Article  PubMed  Google Scholar 

  36. Stanford SC (2007) The open field test: reinventing the wheel. J Psychopharmacol 21(2):134–135. https://doi.org/10.1177/0269881107073199

    Article  PubMed  Google Scholar 

  37. Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101. https://doi.org/10.1124/pr.113.008144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  39. Lopresti AL, Maker GL, Hood SD, Drummond PD (2014) A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry 48:102–111. https://doi.org/10.1016/j.pnpbp.2013.09.017

    Article  PubMed  Google Scholar 

  40. Nashed MG, Balenko MD, Singh G (2014) Cancer-induced oxidative stress and pain. Curr Pain Headache Rep 18(1):384. https://doi.org/10.1007/s11916-013-0384-1

    Article  PubMed  Google Scholar 

  41. Basu P, Basu A (2020) In vitro and in vivo effects of flavonoids on peripheral neuropathic pain. Molecules 25(5):1171. https://doi.org/10.3390/molecules25051171

  42. Rossetti AC, Paladini MS, Riva MA, Molteni R (2020) Oxidation-reduction mechanisms in psychiatric disorders: a novel target for pharmacological intervention. Pharmacol Ther 210:107520. https://doi.org/10.1016/j.pharmthera.2020.107520

  43. Agca CA, Tuzcu M, Hayirli A, Sahin K (2014) Taurine ameliorates neuropathy via regulating NF-kappaB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem Toxicol 71:116–121. https://doi.org/10.1016/j.fct.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  44. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191. https://doi.org/10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taha R, Blaise GA (2012) Update on the pathogenesis of complex regional pain syndrome: role of oxidative stress. Can J Anaesth 59(9):875–881. https://doi.org/10.1007/s12630-012-9748-y

    Article  PubMed  Google Scholar 

  46. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M et al (2016) Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 6:30659. https://doi.org/10.1038/srep30659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arruri V, Komirishetty P, Areti A, Dungavath SKN, Kumar A (2017) Nrf2 and NF-kappaB modulation by Plumbagin attenuates functional, behavioural and biochemical deficits in rat model of neuropathic pain. Pharmacol Rep 69(4):625–632. https://doi.org/10.1016/j.pharep.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  48. Ivanova SA, Semke VY, Vetlugina TP, Rakitina NM, Kudyakova TA, Simutkin GG (2007) Signs of apoptosis of immunocompetent cells in patients with depression. Neurosci Behav Physiol 37(5):527–530. https://doi.org/10.1007/s11055-007-0047-y

    Article  CAS  PubMed  Google Scholar 

  49. McKernan DP, Dinan TG, Cryan JF (2009) “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 88(4):246–263. https://doi.org/10.1016/j.pneurobio.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  50. Wann BP, Bah TM, Kaloustian S, Boucher M, Dufort AM, Le Marec N, Godbout R, Rousseau G (2009) Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline. J Psychopharmacol 23(4):451–459. https://doi.org/10.1177/0269881108089820

    Article  CAS  PubMed  Google Scholar 

  51. Sekiguchi M, Sekiguchi Y, Konno S, Kobayashi H, Homma Y, Kikuchi S (2009) Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J 18(12):1978–1985. https://doi.org/10.1007/s00586-009-1064-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dalleau S, Baradat M, Gueraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20(12):1615–1630. https://doi.org/10.1038/cdd.2013.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei Q, Shi F (2013) Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia. Anim Reprod Sci 138(3–4):282–291. https://doi.org/10.1016/j.anireprosci.2013.02.025

    Article  CAS  PubMed  Google Scholar 

  54. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, Madeo F, Kroemer G (2011) Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 289:1–35. https://doi.org/10.1016/B978-0-12-386039-2.00001-8

    Article  CAS  PubMed  Google Scholar 

  55. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. https://doi.org/10.1038/nrm3376

    Article  CAS  PubMed  Google Scholar 

  56. Gerace E, Scartabelli T, Formentini L, Landucci E, Moroni F, Chiarugi A, Pellegrini-Giampietro DE (2012) Mild activation of poly(ADP-ribose) polymerase (PARP) is neuroprotective in rat hippocampal slice models of ischemic tolerance. Eur J Neurosci 36(1):1993–2005. https://doi.org/10.1111/j.1460-9568.2012.08116.x

    Article  PubMed  Google Scholar 

  57. Besson VC, Croci N, Boulu RG, Plotkine M, Marchand-Verrecchia C (2003) Deleterious poly(ADP-ribose)polymerase-1 pathway activation in traumatic brain injury in rat. Brain Res 989(1):58–66. https://doi.org/10.1016/s0006-8993(03)03362-6

    Article  CAS  PubMed  Google Scholar 

  58. Ordway GA, Szebeni A, Hernandez LJ, Crawford JD, Szebeni K, Chandley MJ, Burgess KC, Miller C et al (2017) Antidepressant-like actions of inhibitors of poly(ADP-ribose) polymerase in rodent models. Int J Neuropsychopharmacol 20(12):994–1004. https://doi.org/10.1093/ijnp/pyx068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Komirishetty P, Areti A, Yerra VG, Ruby PK, Sharma SS, Gogoi R, Sistla R, Kumar A (2016) PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci 150:50–60. https://doi.org/10.1016/j.lfs.2016.02.085

    Article  CAS  PubMed  Google Scholar 

  60. Fukuhara K, Ishikawa K, Yasuda S, Kishishita Y, Kim HK, Kakeda T, Yamamoto M, Norii T et al (2012) Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF). Cell Mol Neurobiol 32(6):971–977. https://doi.org/10.1007/s10571-011-9782-2

    Article  CAS  PubMed  Google Scholar 

  61. Wnuk A, Kajta M (2017) Steroid and xenobiotic receptor signalling in apoptosis and autophagy of the nervous system. Int J Mol Sci 18(11):2394. https://doi.org/10.3390/ijms18112394

  62. Schmidt MV, Sterlemann V, Wagner K, Niederleitner B, Ganea K, Liebl C, Deussing JM, Berger S et al (2009) Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: differential short- and long-term consequences. Endocrinology 150(6):2709–2716. https://doi.org/10.1210/en.2008-1211

    Article  CAS  PubMed  Google Scholar 

  63. Boyle MP, Brewer JA, Vogt SK, Wozniak DF, Muglia LJ (2004) Genetic dissection of stress response pathways in vivo. Endocr Res 30(4):859–863. https://doi.org/10.1081/erc-200044120

    Article  CAS  PubMed  Google Scholar 

  64. Borges VC, Savegnago L, Dadalt G, Nogueira CW (2009) Disubstituted diaryl diselenides inhibit [3H]-serotonin uptake in rats. Neurotox Res 15(1):57–61. https://doi.org/10.1007/s12640-009-9005-5

    Article  CAS  PubMed  Google Scholar 

  65. Zhang W, Bai Y, Wang Y, Xiao W (2016) Polypharmacology in drug discovery: a review from systems pharmacology perspective. Curr Pharm Des 22(21):3171–3181. https://doi.org/10.2174/1381612822666160224142812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Universidade Federal de Pelotas (UFPel), Universidade Federal de Santa Maria (UFSM), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROAP), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant numbers 420386/2018-1 and 438384/2018-0) for the financial support. C.W.N. is recipient of CNPq fellowship.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROAP), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant numbers 420386/2018–1 and 438384/2018–0).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: César Augusto Brüning, Cristiani Folharini Bortolatto and Cleisson Schossler Garcia; Methodology: César Augusto Brüning, Cleisson Schossler Garcia, Pabliane Rodrigues Garcia, Carlos Natã da Silva Espíndola; Gustavo D’Avila Nunes, Natália Silva Jardim and Sabrina Grendene Müller; Formal analysis and investigation: César Augusto Brüning, Cleisson Schossler Garcia, Pabliane Rodrigues Garcia, Carlos Natã da Silva Espíndola; Gustavo D’Avila Nunes, Natália Silva Jardim and Sabrina Grendene Müller; Writing—original draft preparation: Cleisson Schossler Garcia, Pabliane Rodrigues Garcia, Carlos Natã da Silva Espíndola and Gustavo D’Avila Nunes; Writing—review and editing: César Augusto Brüning and Cristiani Folharini Bortolatto; Funding acquisition: César Augusto Brüning and Cristiani Folharini Bortolatto; Resources: César Augusto Brüning and Cristiani Folharini Bortolatto; Supervision: César Augusto Brüning and Cristiani Folharini Bortolatto.

Corresponding authors

Correspondence to Cristiani Folharini Bortolatto or César Augusto Brüning.

Ethics declarations

Ethics Approval

The experiments with animals were carried out in accordance with the Research Ethics Committee of the Federal University of Santa Maria (approval number of the ethics committee: 4664250915), affiliated to the National Council for Animal Experimentation Control (CONCEA), in accordance with the Guide from the National Institutes of Health for the care and use of laboratory animals (NIH Publications No. 8023, revised in 1978).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schossler Garcia, C., Garcia, P.R., da Silva Espíndola, C.N. et al. Effect of m-Trifluoromethyl-diphenyl diselenide on the Pain–Depression Dyad Induced by Reserpine: Insights on Oxidative Stress, Apoptotic, and Glucocorticoid Receptor Modulation. Mol Neurobiol 58, 5078–5089 (2021). https://doi.org/10.1007/s12035-021-02483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02483-x

Keywords

Navigation