Skip to main content

Advertisement

Log in

Involvement of α7 nAChR Signaling Cascade in Epigallocatechin Gallate Suppression of β-Amyloid-Induced Apoptotic Cortical Neuronal Insults

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excessive generation and accumulation of the β-amyloid (Aβ) peptide in selectively vulnerable brain regions is a key pathogenic event in the Alzheimer's disease (AD), while epigallocatechin gallate (EGCG) is a very promising chemical to suppress a variety of Aβ-induced neurodegenerative disorders. However, the precise molecular mechanism of EGCG responsible for protection against neurotoxicity still remains elusive. To validate and further investigate the possible mechanism involved, we explored whether EGCG neuroprotection against neurotoxicity of Aβ is mediated through the α7 nicotinic acetylcholine receptor (α7 nAChR) signaling cascade. It was shown in rat primary cortical neurons that short-term treatment with EGCG significantly attenuated the neurotoxicity of Aβ1–42, as demonstrated by increased cell viability, reduced number of apoptotic cells, decreased reactive oxygen species (ROS) generation, and downregulated caspase-3 levels after treatment with 25-μM Aβ1–42. In addition, EGCG markedly strengthened activation of α7nAChR as well as its downstream pathway signaling molecules phosphatidylinositol 3-kinase (PI3K) and Akt, subsequently leading to suppression of Bcl-2 downregulation in Aβ-treated neurons. Conversely, administration of α7nAChR antagonist methyllycaconitine (MLA; 20 μM) to neuronal cultures significantly attenuated the neuroprotection of EGCG against Aβ-induced neurototoxicity, thus presenting new evidence that the α7nAChR activity together with PI3K/Akt transduction signaling may contribute to the molecular mechanism underlying the neuroprotective effects of EGCG against Aβ-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Selkoe DJ, Selkoe MD (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140(8):627–638

    Article  CAS  PubMed  Google Scholar 

  2. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739(2–3):216–223

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe DJ (1991) The molecular pathology of Alzheimer's disease. Neuron 6(4):487–498

    Article  CAS  PubMed  Google Scholar 

  4. Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) Beta-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 90(22):10836–10840

    Article  CAS  PubMed  Google Scholar 

  5. Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131(2):193–202

    Article  CAS  PubMed  Google Scholar 

  6. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. Free Radic Res 36(12):1307–1313

    Article  CAS  PubMed  Google Scholar 

  7. Drachman DA (2006) Aging of the brain, entropy, and Alzheimer disease. Neurology 67(8):1340–1352

    Article  CAS  PubMed  Google Scholar 

  8. Landfield PW, Thibault O, Mazzanti ML, Porter NM, Kerr DS (1992) Mechanisms of neuronal death in brain aging and Alzheimer's disease: role of endocrine-mediated calcium dyshomeostasis. J Neurobiol 23(9):1247–1260

    Article  CAS  PubMed  Google Scholar 

  9. Tamura Y, Sato Y, Akaike A, Shiomi H (1992) Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-d-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 592(1–2):317–325

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Q, Gu Z, Zhang G, Jing G (2000) Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res 857(1–2):71–77

    Article  CAS  PubMed  Google Scholar 

  11. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 3(11):862–872

    Article  CAS  PubMed  Google Scholar 

  12. Blass JP (2002) Alzheimer's disease and Alzheimer's dementia: distinct but overlapping entities. Neurobiol Aging 23(6):1077–1084

    Article  PubMed  Google Scholar 

  13. Ill-Raga G, Ramos-Fernández E, Guix FX, Tajes M, Bosch-Morató M, Palomer E, Palomer E, Godoy J, Belmar S, Cerpa W, Simpkins JW, Inestrosa And NC, Muñoz FJ (2012) Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimers Dis 22(2):641–652

    Google Scholar 

  14. Matos M, Augusto E, Oliveira CR, Agostinho P (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neurosci 156(4):898–910

    Article  CAS  Google Scholar 

  15. Levites Y, Amit T, Youdim MB, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277(34):30574–30580

    Article  CAS  PubMed  Google Scholar 

  16. Levites Y, Youdim MB, Maor G, Mandel S (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63(1):21–29

    Article  CAS  PubMed  Google Scholar 

  17. Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 17(8):952–954

    CAS  PubMed  Google Scholar 

  18. Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, Yu HJ, Do BR, Kim KS, Jung HK (2004) Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology 25(5):793–802

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Bae JH, Lee SR (2004) Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res 77(6):892–900

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Huang YG, Fang D, Le WD (2004) (−)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78(5):723–731

    Article  CAS  PubMed  Google Scholar 

  21. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14(1–2):46–60

    Article  CAS  PubMed  Google Scholar 

  22. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546

    CAS  PubMed  Google Scholar 

  23. Lin CL, Chen TF, Chiu MJ, Way TD, Lin JK (2009) Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol Aging 30(1):81–92

    Article  CAS  PubMed  Google Scholar 

  24. Gauthier M (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv Exp Med Biol 683:97–115

    Article  CAS  PubMed  Google Scholar 

  25. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer's disease. Neurobiol Aging 32(5):834–44

    Article  CAS  PubMed  Google Scholar 

  26. Barik J, Wonnacott S (2006) Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol 69(2):618–628

    Article  CAS  PubMed  Google Scholar 

  27. Picciotto MR, Zoli M (2008) Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Front Biosci 13:492–504

    Article  CAS  PubMed  Google Scholar 

  28. Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40(1–2):211–216

    Article  CAS  PubMed  Google Scholar 

  29. Yu W, Mechawar N, Krantic S, Quirion R (2011) α7 Nicotinic receptor activation reduces β-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 119(4):848–858

    Article  CAS  PubMed  Google Scholar 

  30. Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1–42) amyloid. J Biol Chem 277(47):44920–44924

    Article  CAS  PubMed  Google Scholar 

  31. Stevens TR, Krueger SR, Fitzsimonds RM, Picciotto MR (2003) Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and L-type calcium channel inactivation. J Neurosci 23(31):10093–10099

    CAS  PubMed  Google Scholar 

  32. Arias E, Gallego-Sandín S, Villarroya M, García AG, López MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315(3):1346–1353

    Article  CAS  PubMed  Google Scholar 

  33. Egea J, Rosa AO, Sobrado M, Gandía L, López MG, García AG (2007) Neuroprotection afforded by nicotine against oxygen and glucose deprivation in hippocampal slices is lost in alpha7 nicotinic receptor knockout mice. Neurosci 145(3):866–872

    Article  CAS  Google Scholar 

  34. Shin EJ, Chae JS, Jung ME, Bing G, Ko KH, Kim WK, Wie MB, Cheon MA, Nah SY, Kim HC (2007) Repeated intracerebroventricular infusion of nicotine prevents kainate-induced neurotoxicity by activating the alpha7 nicotinic acetylcholine receptor. Epilepsy Res 73(3):292–298

    Article  CAS  PubMed  Google Scholar 

  35. Weinreb O, Amit T, Mandel S, Youdim MB (2009) Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4(4):283–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108(5):1116–1125

    Article  CAS  PubMed  Google Scholar 

  37. Yang H, Cui GB, Jiao XY, Wang J, Ju G, You SW (2010) Thymosin-beta4 attenuates ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes by inhibiting apoptosis. Cell Mol Neurobiol 30(1):149–160

    Article  PubMed  Google Scholar 

  38. Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68

    Article  CAS  PubMed  Google Scholar 

  39. Yang H, Cheng X, Yao Q, Li J, Ju G (2008) The promotive effects of thymosin beta4 on neuronal survival and neurite outgrowth by upregulating L1 expression. Neurochem Res 33(11):2269–2280

    Article  CAS  PubMed  Google Scholar 

  40. Wei IH, Tu, HC, Huang CC, Tsai MH, Tseng CY, Shieh JY (2011) (−)-Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury. BMC Neurosci 12:52.

    Google Scholar 

  41. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78(5):1073–1082

    Article  CAS  PubMed  Google Scholar 

  42. Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J Mol Neurosci 17(2):205–224

    Article  CAS  PubMed  Google Scholar 

  43. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70(5):603–614

    Article  CAS  PubMed  Google Scholar 

  44. Mandel S, Reznichenko L, Amit T, Youdim MB (2003) Green tea polyphenol (−)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res 5(6):419–424

    Article  PubMed  Google Scholar 

  45. Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 275(8):5626–5632

    Article  CAS  PubMed  Google Scholar 

  46. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998

    Article  CAS  PubMed  Google Scholar 

  47. Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, Hou Q, Shanmugasundaram K, Prasad A, Tung JK, Tejeda AO, Man H, Rigby AC, Luo HR (2012) Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci USA 109(26):10581–10586

    Article  CAS  PubMed  Google Scholar 

  48. Koh SH, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–262

    Article  CAS  PubMed  Google Scholar 

  49. Lee KY, Koh SH, Noh MY, Kim SH, Lee YJ (2008) Phosphatidylinositol-3-kinase activation blocks amyloid beta-induced neurotoxicity. Toxicology 243(1–2):43–50

    Article  CAS  PubMed  Google Scholar 

  50. Lee YJ, Park KH, Park HH, Kim YJ, Lee KY, Kim SH, Koh SH (2009) Cilnidipine mediates a neuroprotective effect by scavenging free radicals and activating the phosphatidylinositol 3-kinase pathway. J Neurochem 111(1):90–100

    Article  CAS  PubMed  Google Scholar 

  51. Lou H, Fan P, Perez RG, Lou H (2011) Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg Med Chem 19(13):4021–4027

    Article  CAS  PubMed  Google Scholar 

  52. Rytömaa M, Lehmann K, Downward J (2000) Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene 19(39):4461–4468

    Article  PubMed  Google Scholar 

  53. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (nos. 81272135 and 30973088) and National High-tech R& D Program of China (2006AA02Z157).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yang.

Additional information

Xijing Zhang and Mingmei Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wu, M., Lu, F. et al. Involvement of α7 nAChR Signaling Cascade in Epigallocatechin Gallate Suppression of β-Amyloid-Induced Apoptotic Cortical Neuronal Insults. Mol Neurobiol 49, 66–77 (2014). https://doi.org/10.1007/s12035-013-8491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8491-x

Keywords

Navigation