Skip to main content
Log in

Bilirubin and Amyloid-β Peptide Induce Cytochrome c Release Through Mitochondrial Membrane Permeabilization

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The pathogenesis of bilirubin encephalopathy and Alzheimer’s disease appears to result from accumulation of unconjugated bilirubin (UCB) and amyloid-β (Aβ) peptide, respectively, which may cause apoptosis. Permeabilization of the mitochondrial membrane, with release of intermembrane proteins, has been strongly implicated in cell death. Inhibition of the mitochondrial permeability is one pathway by which ursodeoxycholate (UDC) and tauroursodeoxycholate (TUDC) protect against apoptosis in hepatic and nonhepatic cells. In this study, we further characterize UCB- and Aβ-induced cytotoxicty in isolated neural cells, and investigate membrane perturbation during incubation of isolated mitochondria with both agents. In addition, we evaluate whether the anti-apoptotic drugs UDC and TUDC prevent any changes from occurring.

Materials and Methods

Primary rat neuron and astrocyte cultures were incubated with UCB or Aβ peptide, either alone or in the presence of UDC. Apoptosis was assessed by DNA fragmentation and nuclear morphological changes. Isolated mitochondria were treated with each toxic, either alone or in combination with UDC, TUDC, or cyclosporine A. Mitochondrial swelling was measured spectrophotometrically and cytochrome c protein levels determined by Western blot.

Results

Incubation of neural cells with both UCB and Aβ induced apoptosis (p < 0.01). Coincubation with UDC reduced apoptosis by >50% (p < 0.05). Both toxins caused membrane permeabilization in isolated mitochondria (p < 0.001); whereas, pretreatment with UDC was protective (p < 0.05). TUDC was even more effective at preventing matrix swelling mediated by Aβ (p < 0.01). UDC and TUDC markedly reduced cytochrome c release associated with mitochondrial permeabilization induced by UCB and Aβ, respectively (p < 0.05). Moreover, cyclosporine A significantly inhibited mitochondrial swelling and cytochrome c efflux mediated by UCB (p < 0.05).

Conclusion

UCB and Aβ peptide activate the apoptotic machinery in neural cells. Toxicity occurs through a mitochondrial-dependent pathway, which in part involves opening of the permeability transition pore. Furthermore, membrane permeabilization is required for cytochrome c release from mitochondria and can be prevented by UDC or TUDC. These data suggest that the mitochondria is a pharmacological target for cytoprotection during unconjugated hyperbilirubinemia and neurodegenerative disorders, and that UDC or TUDC may be potential therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobson MD, Weil M, Raff MC. (1997) Programmed cell death in animal development. Cell 88: 347–354.

    Article  CAS  PubMed  Google Scholar 

  2. Thompson CB. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  3. Evan G, Littlewood T. (1998) A matter of life and cell death. Science 281: 1317–1322.

    Article  CAS  PubMed  Google Scholar 

  4. Wyllie AH, Kerr JFR, Currie AR. (1980) Cell death: The significance of apoptosis. Int. Rev. Cytol. 68: 251–306.

    Article  CAS  PubMed  Google Scholar 

  5. Columbano A. (1995) Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J. Cell Biochem. 58: 181–190.

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G, Zamzami N, Susin SA. (1997) Mitochondrial control of apoptosis. Immunol Today. 18: 44–51.

    Article  CAS  PubMed  Google Scholar 

  7. Green DR, Reed JC. (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  8. Wallace DC. (1999) Mitochondrial diseases in man and mouse. Science 283: 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson MD, Burne JF, Raff MC. (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 13: 1899–1910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH. (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127: 15–20.

    Article  CAS  PubMed  Google Scholar 

  11. Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G. (1999) Mitochondrial membrane permeabilization during the apoptotic process. Ann. NY Acad. Sci. 887: 18–30.

    Article  CAS  PubMed  Google Scholar 

  12. Brodersen R, Stern L. (1990) Deposition of bilirubin acid in the central nervous—a hypothesis for the development of kernicterus. Acta Paediatr. Scand. 79: 12–19.

    Article  CAS  PubMed  Google Scholar 

  13. Rubboli G, Ronchi F, Cecchi P, et al. (1997) A neurophysiological study in children and adolescents with Crigler-Najjar syndrome type I. Neuropediatrics 28: 281–286.

    Article  CAS  PubMed  Google Scholar 

  14. Majumadar APN. (1974) Bilirubin encephalopathy: effect on RNA polymerase activity and chromatin template activity in the brain of Gunn rat. Neurobiology 4: 425–431.

    Google Scholar 

  15. Yamada N, Sawasaki Y, Nakajima H. (1977) Impairment of DNA synthesis in Gunn rat cerebellum. Brain Res. 126: 295–307.

    Article  CAS  PubMed  Google Scholar 

  16. Ohno T. (1980) Kernicterus: effect on choline acetyltransferase, glutamic acid decarboxylase and tyrosine hydroxylase activities in the brain of Gunn rat. Brain Res. 196: 282–285.

    Article  CAS  PubMed  Google Scholar 

  17. Morphis L, Constantopoulos A, Matsaniotis N. (1982) Bilirubin-induced modulation of cerebral protein phosphorylation in neonate rabbits in vivo. Science 218: 156–158.

    Article  CAS  PubMed  Google Scholar 

  18. Sano K, Nakamura H, Matsuo T. (1982) Mode of inhibitory action of bilirubin on protein kinase C. Pediatr. Res. 19: 587–590.

    Article  Google Scholar 

  19. Schiff D, Chan G, Poznansky MJ. (1985) Bilirubin toxicity in neuronal cell lines N-115 and NBR-10A. Pediatr. Res. 19: 908–911.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen TWR, Bratlid D, Walaas SI. (1988) Bilirubin decreases phosphorylation of synapsin I, a synaptic vesicle-associated neuronal phosphoprotein, in intact synaptosomes from rat cerebral cortex. Pediatr. Res. 23: 219–223.

    Article  CAS  PubMed  Google Scholar 

  21. Silva R, Mata LR, Gulbenkian S, Brito MA, Tiribelli C, Brites D. (1999) Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem. Biophys. Res. Comm. 265: 67–72.

    Article  CAS  PubMed  Google Scholar 

  22. Silva R, Rodrigues CMP, Brites D. (In press) Bilirubin-induced apoptosis in glial and nerve cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol.

  23. Rodrigues CMP, Sola S, Silva R, Diógenes MJ, Brites D. (2000) Apoptosis induced by deoxycholic acid, unconjugated bilirubin and amyloid β-peptide reflects mitochondrial perturbation which may be inhibited by ursodeoxycholic acid (Abstract). J. Hepatol. 32: 40.

    Article  Google Scholar 

  24. Cowger ML, Igo RP, Labbe RF. (1965) The mechanism of bilirubin toxicity studied with purified respiratory enzyme and tissue culture systems. Biochemistry 4: 2763–2770.

    Article  CAS  PubMed  Google Scholar 

  25. Mustafa MG, Cowger ML, King TE. (1969) Effects of bilirubin on mitochondrial reactions. J. Biol. Chem. 244: 6403–6414.

    PubMed  CAS  Google Scholar 

  26. Noir BA, Boveris A, Garaza Pereira AM, Stoppani AO. (1972) Bilirubin: a multi-site inhibitor of mitochondrial respiration. FEBS Lett. 27: 270–274.

    Article  CAS  PubMed  Google Scholar 

  27. Glenner GG. (1988) Alzheimer’s disease: its proteins and genes. Cell 52: 307–308.

    Article  CAS  PubMed  Google Scholar 

  28. Yankner BA, Duffy LK, Kirschner DA. (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250: 279–282.

    Article  CAS  PubMed  Google Scholar 

  29. Behl C, Davis J, Cole GM, Schubert D. (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem. Biophys. Res. Commun. 186: 944–950.

    Article  CAS  PubMed  Google Scholar 

  30. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. (1992) β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12: 376–389.

    Article  CAS  PubMed  Google Scholar 

  31. Su JH, Anderson AJ, Cummings BJ, Cotman CW. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5: 2529–2533.

    Article  CAS  PubMed  Google Scholar 

  32. Cotman CW, Anderson AJ. (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol. Neurobiol. 10: 19–45.

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. (1998) A novel role of ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101: 2790–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues CMP, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ. 6: 842–854.

    Article  CAS  PubMed  Google Scholar 

  35. Rodrigues CMP, Keene CD, Linehan-Stieers C, Ma X, Low W, Steer CJ. (2000) Tauroursodeoxycholic acid prevents apoptosis induced by the neurotoxin 3-nitropropionic acid in rat neuronal cells: evidence for a mitochondrial-dependent pathway that does not involve the permeability transition (Abstract). J. Hepatol. 32: 86.

    Article  Google Scholar 

  36. Brewer GJ, Torricelli JR, Evege EK, Price PJ. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35: 567–576.

    Article  CAS  PubMed  Google Scholar 

  37. Blondeau JP, Beslin A, Chantoux F, Francon J. (1993) Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J. Neurochem. 60: 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  38. McDonagh AF, Assisi F. (1972) The ready isomerization of bilirubin IX- in aqueous solution. Biochem. J. 129: 797–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oberhammer FA, Pavelka M, Sharma S, et al. (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β 1. Proc. Natl. Acad. Sci. USA 89: 5408–5412.

    Article  CAS  PubMed  Google Scholar 

  40. Walajtys-Rhode E, Zapatero J, Moehren G, Hoek JB. (1992) The role of the matrix calcium level in the enhancement of mitochondrial pyruvate carboxylation by glucagon pretreatment. J. Biol. Chem. 267: 370–379.

    PubMed  CAS  Google Scholar 

  41. Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ. (1995) Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J. Pharmacol. Exp. Ther. 272: 930–938.

    PubMed  CAS  Google Scholar 

  42. Sokol RJ, Devereaux M, Mierau GW, Hambidge KM, Shikes RH. (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology 99: 1061–1071.

    Article  CAS  PubMed  Google Scholar 

  43. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol. Med. 4: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amit Y, Brenner T. (1993) Age-dependent sensitivity of cultured rat glial cells to bilirubin toxicity. Exp. Neurol. 121: 248–255.

    Article  CAS  PubMed  Google Scholar 

  45. Hansen TW, Allen JW. (1997) Oxidation of bilirubin by brain mitochondrial membranes-dependence on Cell type and postnatal age. Biochem. Mol. Med. 60: 155–160.

    Article  CAS  PubMed  Google Scholar 

  46. Rhine WD, Schmitter SP, Yu AC, Eng LF, Stevenson DK. (1999) Bilirubin toxicity and differentiation of cultured astrocytes. J. Perinatol. 19: 206–211.

    Article  CAS  PubMed  Google Scholar 

  47. McLoughlin DJ, Howell ML. (1987) Bilirubin inhibition of enzymes involved in the mitochondrial malate-aspartate shuttle. Biochim. Biophys. Acta 893: 7–12.

    Article  CAS  PubMed  Google Scholar 

  48. Batty HK, Millhouse OE. (1976) Ultrastructure of the Gunn rat substantia nigra. II. Mitochondrial changes. Acta Neuropathol. 34: 7–19.

    Article  CAS  PubMed  Google Scholar 

  49. Kamisaka K, Gatmaitan Z, Moore CL, Arias IM. (1975) Ligandin reverses bilirubin inhibition of liver mitochondrial respiration in vitro. Pediatr. Res. 9: 903–905.

    Article  CAS  PubMed  Google Scholar 

  50. Mayor F. Diez-Guerra J, Valdivieso F, Mayor F. (1986) Effect of bilirubin on the membrane potential of rat brain synaptosomes. J. Neurochem. 47: 363–369.

    Article  CAS  PubMed  Google Scholar 

  51. Beal MF. (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366: 211–223.

    Article  CAS  PubMed  Google Scholar 

  52. Christen Y. (2000) Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71: 621S–629S.

    Article  CAS  PubMed  Google Scholar 

  53. Canevari L, Clark JB, Bates TE. (1999) β-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457: 131–134.

    Article  CAS  PubMed  Google Scholar 

  54. Prasad KN, Cole WC, Hovland AR, et al. (1999) Multiple antioxidants in the prevention and treatment of neurodegenerative disease: analysis of biologic rationale. Curr. Opin. Neurol. 12: 761–770.

    Article  CAS  PubMed  Google Scholar 

  55. Kim CN, Wang X, Huang Y, et al. (1997) Over-expression of Bcl-XL inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis. Cancer Res. 57: 3115–3120.

    PubMed  CAS  Google Scholar 

  56. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Liu X, Bhalla K, et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  58. Neame SJ, Rubin LL, Philpott KL. (1998) Blocking cytochrome c activity within intact neurons inhibits apoptosis. J. Cell Biol. 142: 1583–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2: 156–162.

    Article  CAS  PubMed  Google Scholar 

  60. Bossy-Wetzel E, Newmeyer DD, Green DR. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17: 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    Article  CAS  PubMed  Google Scholar 

  62. Li P, Nijhawan D, Budihardjo I, et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant PRAXIS/C/SAU/14311/1998 from Fundaçào para a Ciência e a Tecnologia, Lisbon, Portugal, and EASL Research Fellowship from the European Association for the Study of the Liver to CMP Rodrigues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília M. P. Rodrigues Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, C.M.P., Solá, S., Silva, R. et al. Bilirubin and Amyloid-β Peptide Induce Cytochrome c Release Through Mitochondrial Membrane Permeabilization. Mol Med 6, 936–946 (2000). https://doi.org/10.1007/BF03401828

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401828

Keywords

Navigation