Skip to main content

Advertisement

Log in

Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2):209–221. doi:10.1016/j.cell.2011.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100(12):2235–2241. doi:10.1111/j.1349-7006.2009.01308.x

    Article  CAS  PubMed  Google Scholar 

  3. Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265. doi:10.1200/JCO.2005.04.5302

    Article  CAS  PubMed  Google Scholar 

  4. Rainov NG, Söling A, Heidecke V (2006) Novel therapies for malignant gliomas: a local affair? Neurosurg Focus 20(4):E9

    PubMed  Google Scholar 

  5. Desjardins A, Rich JN, Quinn JA, Vredenburgh J, Gururangan S, Sathornsumetee S, Reardon DA, Friedman AH et al (2005) Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci 10:2645–2668

    Article  CAS  PubMed  Google Scholar 

  6. Pannu R, Christie DK, Barbosa E, Singh I, Singh AK (2007) Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 101(1):182–200. doi:10.1111/j.1471-4159.2006.04354.x

    Article  CAS  PubMed  Google Scholar 

  7. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125. doi:10.1111/j.1472-8206.2004.00299.x

    Article  CAS  PubMed  Google Scholar 

  8. Stein EA (2002) Management of dyslipidemia in the high-risk patient. Am Heart J 144(6 Suppl):S43–S50. doi:10.1067/mhj.2002.130302

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida M (2003) Potential role of statins in inflammation and atherosclerosis. J Atheroscler Thromb 10(3):140–144

    Article  CAS  PubMed  Google Scholar 

  10. Rader DJ (2003) Therapy to reduce risk of coronary heart disease. Clin Cardiol 26(1):2–8

    Article  PubMed  Google Scholar 

  11. Miida T, Takahashi A, Ikeuchi T (2007) Prevention of stroke and dementia by statin therapy: experimental and clinical evidence of their pleiotropic effects. Pharmacol Ther 113(2):378–393. doi:10.1016/j.pharmthera.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  12. Piermartiri TC, Vandresen-Filho S, de Araújo HB, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR et al (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115. doi:10.1007/s12640-009-9057-6

    Article  CAS  PubMed  Google Scholar 

  13. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, de Bem AF, Prediger RD et al (2010) Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β(1-40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 226(2):274–284. doi:10.1016/j.expneurol.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  14. Jones KD, Couldwell WT, Hinton DR, Su Y, He S, Anker L, Law RE (1994) Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 205(3):1681–1687

    Article  CAS  PubMed  Google Scholar 

  15. Bouterfa HL, Sattelmeyer V, Czub S, Vordermark D, Roosen K, Tonn JC (2000) Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells. Anticancer Res 20(4):2761–2771

    CAS  PubMed  Google Scholar 

  16. Jiang Z, Zheng X, Lytle RA, Higashikubo R, Rich KM (2004) Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells. J Neurochem 89(1):168–178. doi:10.1111/j.1471-4159.2004.02319.x

    Article  CAS  PubMed  Google Scholar 

  17. Obara S, Nakata M, Takeshima H, Kuratsu J, Maruyama I, Kitajima I (2002) Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett 185(2):153–161

    Article  CAS  PubMed  Google Scholar 

  18. Gliemroth J, Zulewski H, Arnold H, Terzis AJ (2003) Migration, proliferation, and invasion of human glioma cells following treatment with simvastatin. Neurosurg Rev 26(2):117–124

    Article  PubMed  Google Scholar 

  19. Wu H, Jiang H, Lu D, Xiong Y, Qu C, Zhou D, Mahmood A, Chopp M (2009) Effect of simvastatin on glioma cell proliferation, migration, and apoptosis. Neurosurgery 65(6):1087–1096 . doi:10.1227/01.NEU.0000360130.52812.1Ddiscussion 1096-1087

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28(11):1369–1378

    CAS  PubMed  Google Scholar 

  21. Kantola T, Kivistö KT, Neuvonen PJ (1998) Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 64(1):58–65. doi:10.1016/S0009-9236(98)90023-6

    Article  CAS  PubMed  Google Scholar 

  22. Tapia-Pérez JH, Kirches E, Mawrin C, Firsching R, Schneider T (2011) Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. Cancer Chemother Pharmacol 67(5):1193–1201. doi:10.1007/s00280-010-1535-2

    Article  PubMed  Google Scholar 

  23. Yongjun Y, Shuyun H, Lei C, Xiangrong C, Zhilin Y, Yiquan K (2013) Atorvastatin suppresses glioma invasion and migration by reducing microglial MT1-MMP expression. J Neuroimmunol 260(1–2):1–8. doi:10.1016/j.jneuroim.2013.04.020

    Article  PubMed  Google Scholar 

  24. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19(24):10767–10777

    CAS  PubMed  Google Scholar 

  25. de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. doi:10.1002/glia.21113

    Article  PubMed  Google Scholar 

  26. Bösel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U et al (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92(6):1386–1398. doi:10.1111/j.1471-4159.2004.02980.x

    Article  PubMed  Google Scholar 

  27. Vandresen-Filho S, Martins WC, Bertoldo DB, Rieger DK, Maestri M, Leal RB, Tasca CI (2016) Atorvastatin prevents glutamate uptake reduction induced by quinolinic acid via MAPKs signaling. Neurochem Res 41(8):2017–2028. doi:10.1007/s11064-016-1913-1

    Article  CAS  PubMed  Google Scholar 

  28. de Saldanha da Gama FJ, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, da Gloria da Costa Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10(1):153–160. doi:10.1021/pr100677g

    Article  Google Scholar 

  29. Mendes-de-Aguiar CB, Alchini R, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG (2008) Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res 86(14):3117–3125. doi:10.1002/jnr.21755

    Article  CAS  PubMed  Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  31. Stepanenko AA, Dmitrenko VV (2015) Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 574(2):193–203. doi:10.1016/j.gene.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Naliwaiko K, Luvizon AC, Donatti L, Chammas R, Mercadante AF, Zanata SM, Nakao LS (2008) Guanosine promotes B16F10 melanoma cell differentiation through PKC-ERK 1/2 pathway. Chem Biol Interact 173(2):122–128. doi:10.1016/j.cbi.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  33. Yelskaya Z, Carrillo V, Dubisz E, Gulzar H, Morgan D, Mahajan SS (2013) Synergistic inhibition of survival, proliferation, and migration of U87 cells with a combination of LY341495 and Iressa. PLoS One 8(5):e64588. doi:10.1371/journal.pone.0064588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV (2014) In vitro cell migration and invasion assays. J Vis Exp (88):e51046. doi:10.3791/51046

  35. Molz S, Decker H, Oliveira IJ, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 30(1):83–89

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro BM (1970) Regulation of glutamine synthetase by enzyme catalyzed structural modification. Angew Chem Int Ed Engl 9(9):670–678. doi:10.1002/anie.197006701

    Article  CAS  PubMed  Google Scholar 

  37. Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, de Bem AF, Tasca CI (2013) Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 62(7):948–955. doi:10.1016/j.neuint.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  38. LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  39. Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8(3–4):221–225

    Article  CAS  PubMed  Google Scholar 

  40. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    Article  CAS  PubMed  Google Scholar 

  41. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108. doi:10.1007/s00401-005-0991-y

    Article  PubMed  Google Scholar 

  42. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508. doi:10.1038/nrn3060

    Article  CAS  PubMed  Google Scholar 

  43. Sławińska-Brych A, Zdzisińska B, Kandefer-Szerszeń M (2014) Fluvastatin inhibits growth and alters the malignant phenotype of the C6 glioma cell line. Pharmacol Rep 66(1):121–129. doi:10.1016/j.pharep.2014.01.002

    Article  PubMed  Google Scholar 

  44. Yanae M, Tsubaki M, Satou T, Itoh T, Imano M, Yamazoe Y, Nishida S (2011) Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma. J Exp Clin Cancer Res 30:74. doi:10.1186/1756-9966-30-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mercurio S, Padovani L, Colin C, Carré M, Tchoghandjian A, Scavarda D, Lambert S, Baeza-Kallee N et al (2013) Evidence for new targets and synergistic effect of metronomic celecoxib/fluvastatin combination in pilocytic astrocytoma. Acta Neuropathol Commun 1:17. doi:10.1186/2051-5960-1-17

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang P, Mukthavaram R, Mukthavavam R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X et al (2014) Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med 12:13. doi:10.1186/1479-5876-12-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Afshordel S, Kern B, Clasohm J, König H, Priester M, Weissenberger J, Kögel D, Eckert GP (2015) Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration, and proliferation—impact of Ras-/Rho-prenylation. Pharmacol Res 91:69–77. doi:10.1016/j.phrs.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  48. Garay T, Juhász É, Molnár E, Eisenbauer M, Czirók A, Dekan B, László V, Hoda MA et al (2013) Cell migration or cytokinesis and proliferation?—revisiting the “go or grow” hypothesis in cancer cells in vitro. Exp Cell Res 319(20):3094–3103. doi:10.1016/j.yexcr.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  49. Koren MJ, Hunninghake DB, Investigators A (2004) Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study. J Am Coll Cardiol 44(9):1772–1779. doi:10.1016/j.jacc.2004.07.053

    PubMed  Google Scholar 

  50. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR et al (2001) Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285(13):1711–1718

    Article  CAS  PubMed  Google Scholar 

  51. Murinson BB, Haughey NJ, Maragakis NJ (2012) Selected statins produce rapid spinal motor neuron loss in vitro. BMC Musculoskelet Disord 13:100. doi:10.1186/1471-2474-13-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bababeygy SR, Polevaya NV, Youssef S, Sun A, Xiong A, Prugpichailers T, Veeravagu A, Hou LC et al (2009) HMG-CoA reductase inhibition causes increased necrosis and apoptosis in an in vivo mouse glioblastoma multiforme model. Anticancer Res 29(12):4901–4908

    CAS  PubMed  Google Scholar 

  53. Yang PM, Liu YL, Lin YC, Shun CT, Wu MS, Chen CC (2010) Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res 70(19):7699–7709. doi:10.1158/0008-5472.CAN-10-1626

    Article  CAS  PubMed  Google Scholar 

  54. Misirkic M, Janjetovic K, Vucicevic L, Tovilovic G, Ristic B, Vilimanovich U, Harhaji-Trajkovic L, Sumarac-Dumanovic M et al (2012) Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. Pharmacol Res 65(1):111–119. doi:10.1016/j.phrs.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  55. Zhang ZS, Wang J, Shen YB, Guo CC, Sai KE, Chen FR, Mei X, Han FU et al (2015) Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol Lett 10(1):379–383. doi:10.3892/ol.2015.3183

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zou Y, Wang Q, Li B, Xie B, Wang W (2014) Temozolomide induces autophagy via ATM-AMPK-ULK1 pathways in glioma. Mol Med Rep 10(1):411–416. doi:10.3892/mmr.2014.2151

    Article  CAS  PubMed  Google Scholar 

  57. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391

    CAS  PubMed  Google Scholar 

  58. de Groot JF, Liu TJ, Fuller G, Yung WK (2005) The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res 65(5):1934–1940. doi:10.1158/0008-5472.CAN-04-3626

    Article  PubMed  Google Scholar 

  59. Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci U S A 98(11):6372–6377. doi:10.1073/pnas.091113598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walczak K, Deneka-Hannemann S, Jarosz B, Zgrajka W, Stoma F, Trojanowski T, Turski WA, Rzeski W (2014) Kynurenic acid inhibits proliferation and migration of human glioblastoma T98G cells. Pharmacol Rep 66(1):130–136. doi:10.1016/j.pharep.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  61. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K et al (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27(30):7987–8001. doi:10.1523/JNEUROSCI.2180-07.2007

    Article  CAS  PubMed  Google Scholar 

  62. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67(19):9463–9471. doi:10.1158/0008-5472.CAN-07-2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zacco A, Togo J, Spence K, Ellis A, Lloyd D, Furlong S, Piser T (2003) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 23(35):11104–11111

    CAS  PubMed  Google Scholar 

  64. Gutierrez-Vargas JA, Muñoz-Manco JI, Garcia-Segura LM, Cardona-Gómez GP (2014) GluN2B N-methyl-D-aspartic acid receptor subunit mediates atorvastatin-induced neuroprotection after focal cerebral ischemia. J Neurosci Res 92(11):1529–1548. doi:10.1002/jnr.23426

    Article  CAS  PubMed  Google Scholar 

  65. Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, Uretsky BF, Birnbaum Y (2007) The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol 293(3):H1918–H1928. doi:10.1152/ajpheart.00416.2007

    Article  CAS  PubMed  Google Scholar 

  66. Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C et al (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132(4):435–445. doi:10.1007/s00418-009-0613-1

    Article  CAS  PubMed  Google Scholar 

  67. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U et al (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci U S A 102(43):15605–15610. doi:10.1073/pnas.0507679102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamaguchi F, Hirata Y, Akram H, Kamitori K, Dong Y, Sui L, Tokuda M (2013) FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801. BMC Cancer 13:468. doi:10.1186/1471-2407-13-468

    Article  PubMed  PubMed Central  Google Scholar 

  69. Abdul M, Hoosein N (2005) N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol 205(3):125–128. doi:10.1007/s00232-005-0777-0

    Article  CAS  PubMed  Google Scholar 

  70. Kitabatake T, Moaddel R, Cole R, Gandhari M, Frazier C, Hartenstein J, Rosenberg A, Bernier M et al (2008) Characterization of a multiple ligand-gated ion channel cellular membrane affinity chromatography column and identification of endogenously expressed receptors in astrocytoma cell lines. Anal Chem 80(22):8673–8680. doi:10.1021/ac8016407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. North WG, Gao G, Memoli VA, Pang RH, Lynch L (2010) Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat 122(2):307–314. doi:10.1007/s10549-009-0556-1

    Article  CAS  PubMed  Google Scholar 

  72. Herner A, Sauliunaite D, Michalski CW, Erkan M, De Oliveira T, Abiatari I, Kong B, Esposito I et al (2011) Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer 129(10):2349–2359. doi:10.1002/ijc.25898

    Article  CAS  PubMed  Google Scholar 

  73. Stepulak A, Sifringer M, Rzeski W, Brocke K, Gratopp A, Pohl EE, Turski L, Ikonomidou C (2007) AMPA antagonists inhibit the extracellular signal regulated kinase pathway and suppress lung cancer growth. Cancer Biol Ther 6(12):1908–1915

    Article  CAS  PubMed  Google Scholar 

  74. de Groot JF, Piao Y, Lu L, Fuller GN, Yung WK (2008) Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neuro-Oncol 88(2):121–133. doi:10.1007/s11060-008-9552-2

    Article  Google Scholar 

  75. Wang Q, Zengin A, Deng C, Li Y, Newell KA, Yang GY, Lu Y, Wilder-Smith EP et al (2009) High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: the association with the up-regulation of NMDA receptor binding in the rat brain. Exp Neurol 216(1):132–138. doi:10.1016/j.expneurol.2008.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Universal/2012; INCT), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) (NENASC/PRONEX), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) (PVE-052/2012) to C.I.T. and CNPq (Universal/2013) to C.B.N. T.D.-C. was recipient of a CAPES/PVE post-doctoral fellowship, and C.I.T. is recipient of CNPq productivity fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla I. Tasca.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, K.A., Dal-Cim, T., Lopes, F.G. et al. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells. Mol Neurobiol 55, 1509–1523 (2018). https://doi.org/10.1007/s12035-017-0423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0423-8

Keywords

Navigation