Skip to main content

Advertisement

Log in

Anti-inflammatory Effects of Atorvastatin by Suppressing TRAF3IP2 and IL-17RA in Human Glioblastoma Spheroids Cultured in a Three-dimensional Model: Possible Relevance to Glioblastoma Treatment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 06 May 2017

This article has been updated

Abstract

Glioblastoma multiform (GBM) is a primary malignant brain tumor with a few therapeutic targets available for it. The interaction between the immune system and glioma is an important factor that could lead to novel therapeutic approaches to fight glioma. In this study, we investigated in vitro anti-inflammatory and apoptotic activity of atorvastatin in different concentrations 1, 5, and 10 μM on glioma spheroid cells cultured in a three-dimensional model in fibrin gel that indicate the complex in vivo microenvironment better than a simple two-dimensional cell culture. A mechanistic insight into the role of IL-17RA, TRAF3IP2, and apoptotic genes in progression of glioma could provide an important way for therapy of malignant tumors with manipulation of this inflammatory axis. To reach for these aims, after 24 and 48 h exposure with different concentrations of atorvastatin, caspase-8, caspase-3, Bcl-2, TRAF3IP2, and IL-17RA gene expression were assayed. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and cell cycle assay were used for evaluating the cell apoptosis and proliferation. The results showed that atorvastatin has anti-inflammatory and apoptotic effects against glioma spheroids. Atorvastatin induced the expression of caspase-3 and caspase-8 and downregulated the expression of Bcl-2, TRAF3IP2, and IL-17RA especially at 10 μM concentration. These effects are dose dependent. The most likely mechanisms are the inhibition of inflammation by IL-17RA interaction with TRAF3IP2 and NF-κB signaling pathway. Finally, these results suggest that atorvastatin could be used as an anti-cancer agent for glioblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 06 May 2017

    An erratum to this article has been published.

References

  1. Galvão RP, Zong H (2013) Inflammation and gliomagenesis: bi-directional communication at early and late stages of tumor progression. Curr Pathobiology Reports 1(1):19–28

    Article  Google Scholar 

  2. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710

    Article  CAS  PubMed  Google Scholar 

  3. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  4. Sciume G, Santoni A and Bernardini G (2010) Chemokines and glioma: invasion and more. J Neuroimmunol 224(1–2):8–12

  5. Yeung YT, McDonald KL, Grewal T, Munoz L (2013) Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 168(3):591–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346

    Article  CAS  PubMed  Google Scholar 

  7. Guo J, Shinriki S, Su Y, Nakamura T, Hayashi M, Tsuda Y, Murakami Y, Tasaki M et al (2014) Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy. Oncotarget 5(15):6353–6364

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barcellos-Hoff MH, Newcomb EW, Zagzag D, Narayana A (2009) Therapeutic targets in malignant glioblastoma microenvironment. Semin Radiat Oncol 19(3):163–170

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anderson JC, McFarland BC, Gladson CL (2008) New molecular targets in angiogenic vessels of glioblastoma tumours. Expert Rev Mol Med 10:e23

    Article  PubMed  PubMed Central  Google Scholar 

  10. Daugherty SE, Moore SC, Pfeiffer RM, Inskip PD, Park Y, Hollenbeck A, Rajaraman P (2011) Nonsteroidal anti-inflammatory drugs and glioma in the NIH-AARP Diet and Health Study cohort. Cancer Prev Res 4(12):2027–2034

    Article  CAS  Google Scholar 

  11. Riad A, Du J, Stiehl S, Westermann D, Mohr Z, Sobirey M, Doehner W, Adams V et al (2007) Low-dose treatment with atorvastatin leads to anti-oxidative and anti-inflammatory effects in diabetes mellitus. Eur J Pharmacol 569(3):204–211

    Article  CAS  PubMed  Google Scholar 

  12. Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4(12):977–987

    Article  CAS  PubMed  Google Scholar 

  13. Blanco-Colio LM, Tuñón J, Martín-Ventura JL, Egido J (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63(1):12–23

    Article  CAS  PubMed  Google Scholar 

  14. Gómez-Gerique JA, Ros E, Oliván J, Mostaza JM, Vilardell M, Pintó X, Civeira F, Hernández A et al (2002) Effect of atorvastatin and bezafibrate on plasma levels of C-reactive protein in combined (mixed) hyperlipidemia. Atherosclerosis 162(2):245–251

    Article  PubMed  Google Scholar 

  15. Ferro D, Parrotto S, Basili S, Alessandri C, Violi F (2000) Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol 36(2):427–431

    Article  CAS  PubMed  Google Scholar 

  16. Stanislaus R, Gilg AG, Singh AK, Singh I (2002) Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. Neurosci Lett 333(3):167–170

    Article  CAS  PubMed  Google Scholar 

  17. Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C (2012) Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 18(11):1519–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miossec P (2009) IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 11(5):625–630

    Article  CAS  PubMed  Google Scholar 

  20. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  21. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB-and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6(2):1

    Article  Google Scholar 

  22. Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64(2):477–485

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Commane M, Nie H, Hua X, Chatterjee-Kishore M, Wald D, Haag M, Stark GR (2000) Act1, an NF-κB-activating protein. Proc Natl Acad Sci 97(19):10489–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, Belouchi M, Fournier H et al (2010) Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet 42(11):991–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang P, Mukthavaram R, Chao Y, Nomura N, Bharati IS, Fogal V, Pastorino S, Teng D et al (2014) In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br J Cancer 111(8):1562–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altwairgi AK (2015) Statins are potential anticancerous agents (review). Oncol Rep 33(3):1019–1039

    Article  CAS  PubMed  Google Scholar 

  27. Wu XD, Zeng K, Xue FQ, Chen JH, Chen YQ (2013) Statins are associated with reduced risk of gastric cancer: a meta-analysis. Eur J Clin Pharmacol 69(10):1855–1860

    Article  CAS  PubMed  Google Scholar 

  28. Tapia-Pérez JH, Kirches E, Mawrin C, Firsching R, Schneider T (2011) Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. Cancer Chemother Pharmacol 67(5):1193–1201

    Article  PubMed  Google Scholar 

  29. Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B (2016) Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. Springerplus 5(235):016–1910

    Google Scholar 

  31. Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32(7):1256–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kula M, Tanriverdi G, Oksuz E, Bilir A, Shahzadi A, Yazici Z (2014) Simvastatin and dexamethasone potentiate antitumor activity of fotemustine. Int J Pharmacol 10(5):267–274

    Article  Google Scholar 

  33. Obara S, Nakata M, Takeshima H, Kuratsu JI, Maruyama I, Kitajima I (2002) Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett 185(2):153–161

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi HK, Nishibori M (2007) The antitumour activities of statins. Curr Oncol 14(6):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hindler K, Cleeland CS, Rivera E, Collard CD (2006) The role of statins in cancer therapy. Oncologist 11(3):306–315

    Article  CAS  PubMed  Google Scholar 

  36. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4) potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287(25):21384–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fromigué O, Hamidouche Z, Marie PJ (2008) Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. J Biol Chem 283(45):30549–30556

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gray GK, McFarland BC, Nozell SE, Benveniste EN (2014) NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother 14(11):1293–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McFarland BC, Gray GK, Nozell SE, Hong SW, Benveniste EN (2013) Activation of the NF-kappaB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Mol Cancer Res 11(5):494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wood WG, Igbavboa U, Muller WE, Eckert GP (2013) Statins, Bcl-2, and apoptosis: cell death or cell protection? Mol Neurobiol 48(2):308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37(11):719–727

    Article  CAS  PubMed  Google Scholar 

  42. Sarma JD, Ciric B, Marek R, Sadhukhan S, Caruso ML et al (2009) Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parajuli P, Mittal S (2013) Role of IL-17 in glioma progression. J Spine Neurosurg 1:1–4

    Google Scholar 

  44. Parajuli P, Anand R, Mandalaparty C, Suryadevara R, Sriranga PU et al (2016) Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget 7(5):6121

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D (2014) The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediat Inflamm 1:1–12

    Google Scholar 

  46. Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K (2015) The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp 63(6):435–449

    Article  CAS  Google Scholar 

  47. Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, Zhang W, Zhong Z et al (2014) Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41(6):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hunter CA (2007) Act1-ivating IL-17 inflammation. Nat Immunol 8(3):232–234

    Article  CAS  PubMed  Google Scholar 

  49. Valente AJ, Sakamuri SS, Siddesha JM, Yoshida T, Gardner JD, Prabhu R, Siebenlist U, Chandrasekar B (2013) TRAF3IP2 mediates interleukin-18-induced cardiac fibroblast migration and differentiation. Cell Signal 25(11):2176–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Venkatesan B, Valente AJ, Das NA, Carpenter AJ, Yoshida T, Delafontaine JL, Siebenlist U, Chandrasekar B (2013) CIKS (Act1 or TRAF3IP2) mediates high glucose-induced endothelial dysfunction. Cell Signal 25(1):359–371

    Article  CAS  PubMed  Google Scholar 

  51. Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B (2014) OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med 70:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaffen SL (2009) Structure and signaling in the IL-17 receptor superfamily. Nat Rev Immunol 9(8):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Iran National Science Foundation (INSF) for the financial support (grant number 93051217) and Tehran University of Medical Sciences for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Ebrahimi-Barough or Jafar Ai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Dr. Jafar Ai is the first corresponding author.

An erratum to this article is available at https://doi.org/10.1007/s12035-017-0577-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, N., Ebrahimi-Barough, S., Norouzi-Javidan, A. et al. Anti-inflammatory Effects of Atorvastatin by Suppressing TRAF3IP2 and IL-17RA in Human Glioblastoma Spheroids Cultured in a Three-dimensional Model: Possible Relevance to Glioblastoma Treatment. Mol Neurobiol 55, 2102–2110 (2018). https://doi.org/10.1007/s12035-017-0445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0445-2

Keywords

Navigation