Skip to main content
Log in

Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes. The mass output rate and the crystal size were obtained with variation of the rotation speed of magnetic stirrer for both types of electrolytes. The mass output rate of CuO nanoparticles increased with the increase in the speed of rotation, and, after an optimum speed, it started decreasing. However, the size of the particles reduced with the increase of the rotation speed. The crystal plane of the obtained CuO nanoparticles was similar for both the electrolytes whereas the yield of nanoparticles was higher in KOH as compared with NaOH under the same experiment conditions. In this set of experiments, the maximum output rates obtained were 21.66 mg h−1 for NaOH and 24.66 mg h−1 for KOH at 200 rpm for a single discharge arrangement. The average crystal size of CuO particles obtained was in the range of 13–18 nm for KOH electrolyte and 15–20 nm for NaOH electrolyte. Scanning electron microscopy images revealed that flower-like and caddice clew-shaped CuO nanocrystalline particles were synthesized by the electrochemical discharge process. Fourier transform infrared spectrum showed that the CuO nanoparticles have a pure and monolithic phase. UV–vis–NIR spectroscopy was used to monitor oxidation course of Cu → CuO and the band gap energy was measured as 2 and 2.6 eV for CuO nanoparticle synthesized in NaOH and KOH solutions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Horikoshi S and Serpone N (Eds) 2013 Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (John Wiley & Sons)

  2. Hett A 2004 Nanotechnology: Small Matter, Many Unknowns (Zurich, Swiss Reinsurance Company)

  3. Poddar P, Telem-Shafir T, Fried T and Markovich G 2002 Phys. Rev. B 66 060403

    Article  Google Scholar 

  4. Kumar P and Kumar R 2015 Thin Solid Films doi: 10.1016/ j.tsf.2015.08.047

  5. Edgeworth J P, Wilson N R and Macpherson J V 2007 Small 5 860

    Article  Google Scholar 

  6. Goupalov S V 2005 Phys. Rev. B 8 085420

    Article  Google Scholar 

  7. Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A and Walsh F C 2005 J. Phys. Chem. B 18 8565

    Article  Google Scholar 

  8. Chen S, Duan J, Ran J, Jaroniec M and Qiao S Z 2013 Energy Environ. Sci. 6 3693

    Article  Google Scholar 

  9. Wang Z L 2004 J. Phys.: Condens. Matter 16 829

    Google Scholar 

  10. Fernandez-Garcia M, Martinez-Arias A, Hanson J C and Rodriguez J A 2004 Chem. Rev. 104 4063

    Article  Google Scholar 

  11. Vayssieres L 2004 Int. J. Nanotechnol. 1 1

    Article  Google Scholar 

  12. Jun Y-W, Choi J-S and Cheon J 2006 Angew. Chem. Int. Ed. 45 3414

    Article  Google Scholar 

  13. Chen X and Mao S S 2007 Chem. Rev. 107 2891

    Article  Google Scholar 

  14. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L and Muller R N 2008 Chem. Rev. 108 2064

    Article  Google Scholar 

  15. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A and Sberveglieri G 2009 Prog. Mater. Sci. 54 1

    Article  Google Scholar 

  16. Dutta S, Chattopadhyay S, Sarkar A, Chakrabarti M, Sanyal D and Jana D 2009 Prog. Mater. Sci. 54 89

    Article  Google Scholar 

  17. Barth S, Hernandez-Ramirez F, Holmes J D and Romano-Rodriguez A 2010 Prog. Mater. Sci. 55 563

    Article  Google Scholar 

  18. Singh D P and Ali N 2010 Sci. Adv. Mater. 2 295

    Article  Google Scholar 

  19. Li Y and Somorjai G A 2010 Nano Lett. 10 2289

    Article  Google Scholar 

  20. Hu J, Chen M, Fang X and Wu L 2011 Chem. Soc. Rev. 40 5472

    Article  Google Scholar 

  21. Devan R S, Patil R A, Lin J-H and Ma Y-R 2012 Adv. Funct. Mater. 22 3326

    Article  Google Scholar 

  22. Tiwari J N, Tiwari R N and Kim K S 2012 Prog. Mater. Sci. 57 724

    Article  Google Scholar 

  23. Spencer M J 2012 Prog. Mater. Sci. 57 437

    Article  Google Scholar 

  24. Park J, Joo J, Kwon S G, Jang Y and Hyeon T 2007 Angew. Chem. Int. Ed. 46 4630

    Article  Google Scholar 

  25. Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A and Kalantar-Zadeh K 2011 Adv. Funct. Mater. 21 2175

    Article  Google Scholar 

  26. MacDonald A H 2001 Nature 414 409

    Article  Google Scholar 

  27. Liu Y, Chu Y, Zhuo Y, Li M, Li L and Dong L 2007 Cryst. Growth Des. 7 467

    Article  Google Scholar 

  28. Vaseem M, Umar A, Kim S H and Hahn Y B 2008 J. Phys. Chem. C 112 5729

    Article  Google Scholar 

  29. Son D I, You C H and Kim T W 2009 Appl. Surf. Sci. 255 8794

    Article  Google Scholar 

  30. Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z and Xin X Q 1999 J. Solid State Chem. 147 516

    Article  Google Scholar 

  31. Tran T H and Nguyen V T 2014 Int. Sch. Res. Notices 2014

  32. Zhang J, Liu J, Peng Q, Wang X and Li Y 2006 Chem. Mater. 18 867

    Article  Google Scholar 

  33. Choi Y-H, Kim D-H, Han H S, Shin S, Hong S-H and Hong K S 2014 Langmuir 30 700

    Article  Google Scholar 

  34. Umar A, Rahman M M, Al-Hajry A and Hahn Y B 2009 Electrochem. Commun. 11 278

    Article  Google Scholar 

  35. Rahman M M, Ahammad A J, Jin J-H, Ahn S J and Lee J-J 2010 Sensors 10 4855

    Article  Google Scholar 

  36. Wang X, Hu C, Liu H, Du G, He X and Xi Y 2010 Sens. Actuators B—Chem. 144 220

    Article  Google Scholar 

  37. Hsu Y-W, Hsu T-K, Sun C-L, Nien Y-T, Pu N-W and Ger M-D 2012 Electrochim. Acta 82 152

    Article  Google Scholar 

  38. Huang J, Dong Z, Li Y, Li J, Wang J, Yang H, Li S, Guo S, Jin J and Li R 2013 Sens. Actuators B—Chem. 182 618

    Article  Google Scholar 

  39. Wang S B, Hsiao C H, Chang S J, Lam K T, Wen K H, Hung S C, Young S J and Huang B R 2011 Sens. Actuators A—Phys. 171 207

    Article  Google Scholar 

  40. Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P and Vahlas C 2007 J. Microelectromech. Syst. 16 919

    Article  Google Scholar 

  41. Dar M A, Kim Y S, Kim W B, Sohn J M and Shin H S 2008 Appl. Surf. Sci. 254 7477

    Article  Google Scholar 

  42. Zhang X, Shi W, Zhu J, Kharistal D J, Zhao W, Lalia B S, Hng H H and Yan Q 2011 ACS Nano 5 2013

    Article  Google Scholar 

  43. Liu J, Jin J, Deng Z, Huang S-Z, Hu Z-Y, Wang L, Wang C, Chen L-H, Li Y, Tendeloo G V and Su B L 2012 J. Colloid Interface Sci. 384 1

    Article  Google Scholar 

  44. Chang Y N, Zhang M, Xia L, Zhang J and Xing G 2012 Materials 5 2850

    Article  Google Scholar 

  45. Kumar R V, Diamant Y and Gedanken A 2000 Chem. Mater. 12 2301

    Article  Google Scholar 

  46. Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A and Norwig J 2001 Langmuir 17 1406

    Article  Google Scholar 

  47. Ranjbar-Karimi R, Bazmandegan-Shamili A, Aslani A and Kaviani K 2010 Physica B: Condens. Matter 405 3096

    Article  Google Scholar 

  48. Singh I and Bedi R K 2011 Solid State Sci. 13

  49. Anandan S, Lee G J and Wu J J 2012 Ultrason. Sonochem. 19 682

    Article  Google Scholar 

  50. Eshed M, Lellouche J, Matalon S, Gedanken A and Banin E 2012 Langmuir 28 12288

    Article  Google Scholar 

  51. Shui A, Zhu W, Xu L, Qin D and Wang Y 2013 Ceram. Int. 39 8715

    Article  Google Scholar 

  52. Chen Y-J, Meng F-N, Yu H-L, Zhu C-L, Wang T-S, Gao P and Ouyang Q Y 2013 Sens. Actuators B—Chem. 176 15

    Article  Google Scholar 

  53. Yang X-D, Jiang L-L, Mao C-J, Niu H-L, Song J-M and Zhang S-Y 2014 Mater. Lett. 115 121

    Article  Google Scholar 

  54. Sonia S, Jayram N D, Kumar P S, Mangalaraj D, Ponpandian N and Viswanathan C 2014 Superlattices Microstruct. 66 1

    Article  Google Scholar 

  55. Qi X, Huang Y, Klapper M, Boey F, Huang W, Feyter S D, Müllen K and Zhang H 2010 J. Phys. Chem. C 114 13465

    Article  Google Scholar 

  56. Jadhav L D, Patil S P, Chavan A U, Jamale A P and Puri V R 2011 Micro Nano Lett. 6 812

    Article  Google Scholar 

  57. Bayansal F, Kahraman S, Çankaya G, Çetinkara H A, Güder H S and Çakmak H M 2011 J. Alloys Compd. 509 2094

    Article  Google Scholar 

  58. Umadevi M and Christy A J 2013 Spectrochim. Acta Mol. Biomol. Spectrosc. 109 133

    Article  Google Scholar 

  59. Christy A J, Nehru L C and Umadevi M 2013 Powder Technol. 235 783

    Article  Google Scholar 

  60. Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D and Nagabhushana H 2015 J. Taibah Univ. Sci. 9 7

    Article  Google Scholar 

  61. Han D, Yang H, Zhu C and Wang F 2008 Powder Technol. 185 286

    Article  Google Scholar 

  62. Zhao Y, Zhu J J, Hong J M, Bian N and Chen H Y 2004 Eur. J. Inorg. Chem. 2004 4072

  63. Dagher S, Haik Y, Ayesh A I and Tit N 2014 J. Lumin. 151 149

    Article  Google Scholar 

  64. Khashan K S, Sulaiman G M and Abdulameer F A 2016 Arab. J. Sci. Eng. 41 301

  65. Jung H J, Yu Y and Choi M Y 2015 Bull. Korean Chem. Soc. 36 3

    Article  Google Scholar 

  66. Maul J, Brito A S, de Oliveira A L M, Lima S J G, Maurera M A M A, Keyson D, Souza A G and Santos I M G 2011 J. Therm. Anal. Calorim. 106 519

    Article  Google Scholar 

  67. Jiang T, Wang Y, Meng D, Wu X, Wang J and Chen J 2014 Appl. Surf. Sci. 311 602

    Article  Google Scholar 

  68. Chiang C-Y, Aroh K and Ehrman S H 2012 Int. J. Hydrogen Energy 37 4871

    Article  Google Scholar 

  69. Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L and Jiang J 2005 J. Phys. Chem. B 109 14011

    Article  Google Scholar 

  70. Kassaee M Z, Buazar F and Motamedi E 2010 J. Nanomater. 2010 7

    Article  Google Scholar 

  71. Karahaliou P K, Svarnas P, Georga S N, Xanthopoulos N I, Delaportas D, Krontiras C A and Alexandrou I 2012 J. Nanopart. Res. 14 1

    Article  Google Scholar 

  72. Goli M, Haratizadeh H and Abrishami M E 2014 Ceram. Int. 40 16071

    Article  Google Scholar 

  73. Lal A, Bleuler H and Wüthrich R 2008 Electrochem. Commun. 10 488

    Article  Google Scholar 

  74. Wüthrich R and Mandin P 2009 Electrochim. Acta 54 4031

    Article  Google Scholar 

  75. Allagui A and Wüthrich R 2011 Electrochim. Acta 58 12

    Article  Google Scholar 

  76. Culity B D and Stock S R 1978 Principles of X-ray Diffraction (Reading: Addision-Wesley)

  77. Wuthrich R and Ziki J D A 2014 Micromachining Using Electrochemical Discharge Phenomenon: Fundamentals and Application of Spark Assisted Chemical Engraving (William Andrew)

  78. Cao X D, Kim B H and Chu C N 2009 Precis. Eng. 4 459

    Article  Google Scholar 

  79. Wang H, Xu J Z, Zhu J-J and Chen H-Y 2002 J. Cryst. Growth 244 88

    Article  Google Scholar 

  80. Rehman S, Mumtaz A and Hasanain S K 2011 J. Nanopart. Res. 13 2497

    Article  Google Scholar 

  81. Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S and Maensiri S 2009 Mater. Chem. Phys. 1 423

    Article  Google Scholar 

  82. Mohamed R M, Harraz F A and Shawky A 2014 Ceram. Int. 40 2127

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr G C Nayak from Applied Chemistry Department and Dr T K Mondal from Fuel and Mineral Engineering Department of ISM, Dhanbad, for extending their support for characterization of nanoparticles during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALOK KUMAR DAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, P.K., KUMAR, P., HUSSAIN, M. et al. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bull Mater Sci 39, 469–478 (2016). https://doi.org/10.1007/s12034-016-1159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1159-1

Keywords

Navigation