Skip to main content
Log in

Lipoic acid—an unique plant transformation enhancer

  • BIOTECHNOLOGY
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Including lipoic acid (LA) in culture media during Agrobacterium transformation processes of four crop species has significantly improved the transformation methods of the crops, even for previously recalcitrant genotypes. Plant transformation efficiency of soybean was significantly increased from 0.6% to 3.7% and tomato from 29.8% to 87.0%. Transformation efficiency was doubled from 2.8% to 5.7% in wheat. The frequency of glyphosate-resistant embryos had a significant increase from 41.4% to 61.2% in cotton. Regeneration of non-transgenic shoots under selection (“shoot escapes”) was significantly reduced in tomato from 91.5% to 46.2% while in soybean from 92.0% to 72.0% under optimal conditions. This study also demonstrated that the increase of transformation efficiency in tomato was accompanied by as much as a significant 2-fold reduction in severity of browning of Agrobacterium-infected plant tissues and up to a significant 3-fold increase in the percentage of explants with a high level of transient gene expression. LA application in plant transformation has enabled the resolution of three common problems in plant transformation: browning or necrosis of the transformed cells or tissues, difficulty in regenerating transformed cells or tissues, and shoot escapes, which severely limit the number of transgenic plants that can be regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Cervera M.; Juarez J.; Navarro A.; Pina J. A.; Duran-Vila N.; Navarro L.; Pena L. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage. Transgenic Res 7: 51–59; 1998.

    Article  CAS  Google Scholar 

  • Barry G.; Kishore G.; Padgette S.; Taylor M.; Kolacz K.; Weldon M.; Re D.; Eichholtz D.; Fincher D.; Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Sinch B. K.; Flores H. E.; Shannon J. C. (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rochville, pp139–145; 1992.

    Google Scholar 

  • Dan Y.; Munyikawa T.; Rayford K.; Rommens C. Use of lipoic acid in plant culture media. US Patent Pub. No.: US 2004/0133938 A1; (http://appft1.uspto.gov/netacgi/nph-Parser?Sect1 = PTO2&Sect2 = HITOFF&p = 1&u = %2Fnetahtml%2FPTO%2Fsearch-bool.html&r = 1&f = G&l = 50&co1 = AND&d = PG01&s1 = %22Dan+Yinghui%22&OS=“Dan+Yinghui”&RS=“Dan+Yinghui”)

  • Dan Y.; Yan H.; Munyikwa T.; Dong J.; Zhang Y.; Armstrong C. L. MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep 25: 432–441; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Enriquez-Obregon G. A.; Vazquez-Padron R. I.; Prieto-Samsonov D. L.; Perez M.; Selman-Housein G. Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotechno. Appl 14: 169–174; 1997.

    CAS  Google Scholar 

  • Enríquez-Obregón G.; Prieto-Samsónov D.; Riva G.; Pérez M.; Selman-Housein G.; Vázquez-Padrón R. I. Agrobacterium-mediated japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tiss Organ Cult 59: 159–168; 1999.

    Article  Google Scholar 

  • James C. Global status of commercialized biotech/GM crops: 2005. In: ISAAA Briefs 34–2006. 2006.

  • James D. J.; Passey A. J.; Barbara D. J.; Bevan M. Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep 7: 658–661; 1989.

    CAS  Google Scholar 

  • Jefferson R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405; 1987.

    Article  CAS  Google Scholar 

  • Jeon J.; Lee S.; Jung K.; Jun S.; Jeong D.; Lee J.; Kim C.; Jang S.; Lee S.; Yang K.; Nam J.; An K.; Han M.; Sung R.; Choi H.; Yu J.; Choi J.; Cho S.; Cha S.; Kim S.; An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561–570; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Lagudah E.; Dubcovsky J.; Powell W. Wheat genomics. Plant Physiol Biochem 39: 335–344; 2001.

    Article  CAS  Google Scholar 

  • Lee M.; Kim H.; Kim J.; Kim S.; Park Y. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp pekinensis) plants for insertional mutagenesis. J Plant Biol 47: 300–306; 2004.

    Article  CAS  Google Scholar 

  • May G. D.; Afza R.; Mason H. S.; Wiecko A.; Novak F. J.; Arntzen C. J. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13: 486–492; 1995.

    Article  CAS  Google Scholar 

  • Moore G. A.; Jacono C. C.; Neidigh J. L.; Lawrence S. D.; Cline K. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11: 238–242; 1992.

    Article  CAS  Google Scholar 

  • Mourgues F.; Chevreau E.; Lambert C.; Bondt A. Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16: 245–249; 1996.

    CAS  Google Scholar 

  • Mozsar J.; Viczian O.; Sule S. Agrobacterium-mediated genetic transformation of an interspecific grapevine. Vitis 373: 127–130; 1998.

    CAS  Google Scholar 

  • Nomura K.; Matsumoto S.; Masuda K.; Inoue M. Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M.26. Plant Cell Rep 178: 597–600; 1998.

    Article  CAS  Google Scholar 

  • Olhoft P. M.; Flagel L. E.; Donovan C. M.; Somers D. A. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216: 723–35; 2003.

    CAS  PubMed  Google Scholar 

  • Ostergaard L.; Yanofsky M. Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39: 682–696; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Packer L.; Tritschler H. Alpha-lipoic acid: The metabolic antioxidant. Free Radical Biol Med 20: 625–626; 1996.

    Article  CAS  Google Scholar 

  • Packer L.; Tritschler H.; Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radical Biol Med 22: 359–378; 1997.

    Article  CAS  Google Scholar 

  • Packer L.; Witt E.; Tritschler H. Alpha-lipoic acid as a biological antioxidant. Free Radical Biol Med 19: 227–250; 1995.

    Article  CAS  Google Scholar 

  • Pena L.; Cervera M.; Juarez J.; Navarro A.; Pina J. A.; Duran-Vila N.; Navarro L. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14: 616–619; 1995a.

    Article  CAS  Google Scholar 

  • Pena L.; Cervera M.; Juarez J.; Navarro A.; Pina J. A.; Navarro L. Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16: 731–737; 1997.

    Article  CAS  Google Scholar 

  • Pena L.; Cervera M.; Juarez J.; Ortega C.; Pina J. A.; Duran-Vila N.; Navarro L. High-efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104: 183–191; 1995b.

    Article  CAS  Google Scholar 

  • Pereira A. A. Transgenic perspective on plant functional genomics. Transgenic Res 9: 245–260; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Perl A.; Lotan O.; Abu-Abied M.; Holland D. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14: 624–628; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Rogers S. G. Promoter for transgenic plants. US Patent No. 05378619; 1990.

  • Stipic M.; Rotino G. L.; Piro F. Regeneration and genetic transformation attempts in the cauliflower ‘Tardivo di Fano’. Italus Hortus 7: 20–26; 2000.

    Google Scholar 

  • Toldi O.; Tóth S.; Pónyi T.; Scott P. An effective and reproducible transformation protocol for the model resurrection plant Craterostigma plantagineum Hochst. Plant Cell Rep. 211: 63–69; 2002.

    Article  CAS  Google Scholar 

  • Tyagi A.; Mohanty A. Rice transformation for crop improvement and functional genomics. Plant Sci 158: 1–18; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt G.; Schmidt R.; O’Connor-Sanchez A.; Willmitzer L.; Rocha-Sosa M. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y.; Peng H.; Huang H.; Wu J.; Ha S.; Huang D.; Lu T. Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167: 281–288; 2004.

    Article  CAS  Google Scholar 

  • Zheng Q. S.; Ju B.; Liang L. K.; Xiao X. H. Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 811: 83–89; 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Caius M. Rommens for his helpful idea and encouragement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Dan.

Additional information

Editor: J. Ranch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, Y., Armstrong, C.L., Dong, J. et al. Lipoic acid—an unique plant transformation enhancer. In Vitro Cell.Dev.Biol.-Plant 45, 630–638 (2009). https://doi.org/10.1007/s11627-009-9227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9227-5

Keywords

Navigation