Skip to main content
Log in

Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a chitinase gene (DrChit) that plays a role in the carnivorous processes of Drosera rotundifolia L. was isolated from genomic DNA, linked to a double CaMV35S promoter and nos terminator in a pBinPlus plant binary vector, and used for Agrobacterium-mediated transformation of tobacco. RT-qPCR revealed that within 14 transgenic lines analysed in detail, 57% had DrChit transcript abundance comparable to or lower than level of a reference actin gene transcript. In contrast, the transgenic lines 9 and 14 exhibited 72 and 152 times higher expression level than actin. The protein extracts of these two lines exhibited five and eight times higher chitinolytic activity than non-transgenic controls when measured in a fluorimetric assay with FITC-chitin. Finally, the growth of Trichoderma viride was obviously suppressed when the pathogen was exposed to 100 μg of crude protein extract isolated from line 9 and line 14, with the area of mycelium growth reaching only 56.4% and 45.2%, of non-transgenic control, respectively. This is the first time a chitinase from a carnivorous plant with substrate specificity for long chitin polymers was tested in a transgenic plant with the aim of exploring its antifungal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: New structure and new challenges. Journal of Bacteriology, 180(15), 3735–3740.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 293, 781–788. https://doi.org/10.1042/bj2930781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neuhaus, J. M. (1999). Plant chitinases (PR-3, PR-4, PR-8, PR-11). In S. K. Datta & S. Muthukrishnan (Eds.), Pathogenesis-related proteins in plants (pp. 77–105). Boca Raton, FL: CRC Press.

    Google Scholar 

  4. Sarma, K., Dehury, B., Sahu, J., Sarmah, R., Sahoo, S., Sahu, M., et al. (2012). A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: A step towards increasing plant fungal resistance. Journal of Molecular Modeling, 18(11), 4761–4780. https://doi.org/10.1007/s00894-012-1470-8.

    Article  CAS  PubMed  Google Scholar 

  5. Ohnuma, T., Numata, T., Osawa, T., Inanaga, H., Okazaki, Y., Shinya, S., et al. (2012). Crystal structure and chitin oligosaccharide-binding mode of a loopful’ family GH19 chitinase from rye, Secale cereale, seeds. FEBS Journal, 279(19), 3639–3651. https://doi.org/10.1111/j.1742-4658.2012.08723.x.

    Article  CAS  PubMed  Google Scholar 

  6. van Hengel, A. J., Tadesse, Z., Immerzeel, P., Schols, H., van Kammen, A., & de Vries, S. C. (2001). N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology, 125(4), 1880–1890. https://doi.org/10.1104/pp.125.4.1880.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fraterova, L., Salaj, T., Matusikova, I., & Salaj, J. (2013). The role of chitinases and glucanases in somatic embryogenesis of black pine and hybrid firs. Central European Journal of Biology, 8(12), 1172–1182. https://doi.org/10.2478/s11535-013-0234-5.

    Article  CAS  Google Scholar 

  8. Kasprzewska, A. (2003). Plant chitinases—Regulation and function. Cellular & Molecular Biology Letters, 8(3), 809–824.

    CAS  Google Scholar 

  9. van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425.

    Article  CAS  PubMed  Google Scholar 

  10. Dana, M. D., Pintor-Toro, J. A., & Cubero, B. (2006). Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology, 142(2), 722–730. https://doi.org/10.1104/pp.106.086140.

    Article  CAS  PubMed Central  Google Scholar 

  11. Meszaros, P., Rybansky, L., Hauptvogel, P., Kuna, R., Libantova, J., Moravcikova, J., et al. (2013). Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Molecular Biology Reports, 40(3), 2127–2138. https://doi.org/10.1007/s11033-012-2271-y.

    Article  CAS  PubMed  Google Scholar 

  12. Guleria, P., Kumar, V., & Guleria, S. (2017). Genetic engineering: A possible strategy for protein-energy malnutrition regulation. Molecular Biotechnology, 59(11–12), 499–517. https://doi.org/10.1007/s12033-017-0033-8.

    Article  CAS  PubMed  Google Scholar 

  13. Acharya, K., Chakraborty, N., Dutta, A. K., Sarkar, S., & Acharya, R. (2011). Signaling role of nitric oxide in the induction of plant defense by exogenous application of abiotic inducers. Archives of Phytopathology and Plant Protection, 44(15), 1501–1511. https://doi.org/10.1080/03235408.2010.507943.

    Article  CAS  Google Scholar 

  14. Cletus, J., Balasubramanian, V., Vashisht, D., & Sakthivel, N. (2013). Transgenic expression of plant chitinases to enhance disease resistance. Biotechnology Letters, 35(11), 1719–1732. https://doi.org/10.1007/s10529-013-1269-4.

    Article  CAS  PubMed  Google Scholar 

  15. Graham, L. S., & Sticklen, M. B. (1994). Plant chitinases. Canadian Journal of Botany-Revue Canadienne De Botanique, 72(8), 1057–1083. https://doi.org/10.1139/b94-132.

    Article  CAS  Google Scholar 

  16. Fink, W., Liefland, M., & Mendgen, K. (1988). Chitinases and beta-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L). Plant Physiology, 88(2), 270–275. https://doi.org/10.1104/pp.88.2.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sela-Buurlage, M. B., Ponstein, A. S., Bresvloemans, S. A., Melchers, L. S., Vandenelzen, P. J. M., & Cornelissen, B. J. C. (1993). Only specific tobacco (Nicotiana tabacum) chitinases and beta-1,3-glucanases exhibit antifungal activity. Plant Physiology, 101(3), 857–863. https://doi.org/10.1104/pp.101.3.857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., et al. (1991). Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254(5035), 1194–1197. https://doi.org/10.1126/science.254.5035.1194.

    Article  CAS  PubMed  Google Scholar 

  19. Maximova, S. N., Marelli, J. P., Young, A., Pishak, S., Verica, J. A., & Guiltinan, M. J. (2006). Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 224(4), 740–749. https://doi.org/10.1007/s00425-005-0188-6.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, X. F., Li, L., Li, J. R., & Zhao, D. G. (2016). Constitutive expression of McCHIT1-PAT enhances resistance to rice blast and herbicide, but does not affect grain yield in transgenic glutinous rice. Biotechnology and Applied Biochemistry, 63(1), 77–85. https://doi.org/10.1002/bab.1342.

    Article  CAS  PubMed  Google Scholar 

  21. Lorito, M., Woo, S. L., Fernandez, I. G., Colucci, G., Harman, G. E., Pintor-Toro, J. A., et al. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National academy of Sciences of the United States of America, 95(14), 7860–7865. https://doi.org/10.1073/pnas.95.14.7860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ziaei, M., Motallebi, M., Zamani, M. R., & Panjeh, N. Z. (2016). Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnology Letters, 38(6), 1021–1032. https://doi.org/10.1007/s10529-016-2058-7.

    Article  CAS  PubMed  Google Scholar 

  23. Jabeen, N., Chaudhary, Z., Guffraz, M., Rashid, H., & Mirza, B. (2015). Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to Fusarium Wilt and Early Blight. Plant Pathology Journal, 31(3), 252–258. https://doi.org/10.5423/PPJ.OA.03.2015.0026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moravcikova, J., Libantova, J., Heldak, J., Salaj, J., Bauer, M., Matusikova, I., et al. (2007). Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia beta-1,3-glucanase genes in transgenic potato plants. Acta Physiologiae Plantarum, 29(2), 133–141. https://doi.org/10.1007/s11738-006-0017-y.

    Article  CAS  Google Scholar 

  25. Emani, C., Garcia, J. M., Lopata-Finch, E., Pozo, M. J., Uribe, P., Kim, D. J., et al. (2003). Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, 1(5), 321–336. https://doi.org/10.1046/j.1467-7652.2003.00029.x.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, W., Li, H.-P., Zhang, J.-B., Du, H.-J., Wei, Q.-Y., Huang, T., et al. (2015). Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins. Plant Biotechnology Journal, 13(5), 664–674. https://doi.org/10.1111/pbi.12289.

    Article  CAS  PubMed  Google Scholar 

  27. Karmakar, S., Molla, K. A., Chanda, P. K., Sarkar, S. N., Datta, S. K., & Datta, K. (2016). Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta, 243(1), 115–130. https://doi.org/10.1007/s00425-015-2398-x.

    Article  CAS  PubMed  Google Scholar 

  28. Kamble, S., Mukherjee, P. K., & Eapen, S. (2016). Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines. Physiology and Molecular Biology of Plants, 22(1), 69–76. https://doi.org/10.1007/s12298-016-0340-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J., et al. (2012). Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Molecular Biotechnology, 50(2), 129–136. https://doi.org/10.1007/s12033-011-9426-2.

    Article  CAS  PubMed  Google Scholar 

  30. Ceasar, S. A., & Ignacimuthu, S. (2012). Genetic engineering of crop plants for fungal resistance: Role of antifungal genes. Biotechnology Letters, 34(6), 995–1002. https://doi.org/10.1007/s10529-012-0871-1.

    Article  CAS  PubMed  Google Scholar 

  31. Punja, Z. K. (2001). Genetic engineering of plants to enhance resistance to fungal pathogens—A review of progress and future prospects. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 23(3), 216–235.

    Article  CAS  Google Scholar 

  32. Matusikova, I., Salaj, J., Moravcikova, J., Mlynarova, L., Nap, J. P., & Libantova, J. (2005). Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta, 222(6), 1020–1027. https://doi.org/10.1007/s00425-005-0047-5.

    Article  CAS  PubMed  Google Scholar 

  33. Ishisaki, K., Arai, S., Hamada, T., & Honda, Y. (2012). Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata. Carbohydrate Research, 361, 170–174. https://doi.org/10.1016/j.carres.2012.09.001.

    Article  CAS  PubMed  Google Scholar 

  34. Jopcik, M., Moravcikova, J., Matusikova, I., Bauer, M., Rajninec, M., & Libantova, J. (2017). Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Planta, 245(2), 313–327. https://doi.org/10.1007/s00425-016-2608-1.

    Article  CAS  PubMed  Google Scholar 

  35. Eilenberg, H., Pnini-Cohen, S., Schuster, S., Movtchan, A., & Zilberstein, A. (2006). Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany, 57(11), 2775–2784. https://doi.org/10.1093/jxb/erl048.

    Article  CAS  PubMed  Google Scholar 

  36. Hatano, N., & Hamada, T. (2012). Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. Journal of Proteomics, 75(15), 4844–4852. https://doi.org/10.1016/j.jprot.2012.05.048.

    Article  CAS  PubMed  Google Scholar 

  37. Roberts, C. S., Rajagopal, S., Smith, L. A., Nguyen, T. A., Yang, W., Nugroho, S., et al. (2002). A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants by both Agrobacterium and direct DNA uptake methods. CAMBIA, Canberra, Australia. http://www.cambia.org.

  38. van Engelen, F. A., Molthoff, J. W., Conner, A. J., Nap, J. P., Pereira, A., & Stiekema, W. J. (1995). pBINPLUS—An improved plant transformation vector based on pBIN19. Transgenic Research, 4(4), 288–290. https://doi.org/10.1007/BF01969123.

    Article  PubMed  Google Scholar 

  39. Mlynarova, L., Loonen, A., Heldens, J., Jansen, R. C., Keizer, P., Stiekema, W. J., et al. (1994). Reduced position effect in mature plants conferred by the chicken lysozyme matrix-associated region. Plant Cell, 6(3), 417–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J., Greenblatt, I. M., & Dellaporta, S. L. (1992). Molecular analysis of Ac transposition and DNA replication. Genetics, 130(3), 665–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J. S., & Monfort, E. (2004). Endochitinase activity determination using N-fluorescein-labeled chitin. Journal of Biochemical and Biophysical Methods, 60(1), 29–38. https://doi.org/10.1016/j.jbbm.2004.04.013.

    Article  CAS  PubMed  Google Scholar 

  43. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  44. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vellicce, G. R., Ricci, J. C. D., Hernandez, L., & Castagnaro, A. P. (2006). Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Research, 15(1), 57–68. https://doi.org/10.1007/s11248-005-2543-6.

    Article  CAS  PubMed  Google Scholar 

  46. Badrhadad, A., Nazarian-Firouzabadi, F., & Ismaili, A. (2018). Fusion of a chitin-binding domain to an antibacterial peptide to enhance resistance to Fusarium solani in tobacco (Nicotiana tabacum). 3 Biotech, 8(9), 391. https://doi.org/10.1007/s13205-018-1416-7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Forsbach, A., Schubert, D., Lechtenberg, B., Gils, M., & Schmidt, R. (2003). A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology, 52(1), 161–176. https://doi.org/10.1023/A:1023929630687.

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Y. H., Zhang, L., Wu, G., Nie, S. J., & Lu, C. M. (2014). Characterization of genomic integration and transgene organization in six transgenic rapeseed events. Journal of Integrative Agriculture, 13(9), 1865–1876. https://doi.org/10.1016/S2095-3119(13)60628-0.

    Article  CAS  Google Scholar 

  49. Boszoradova, E., Libantova, J., Matusikova, I., & Moravcikova, J. (2014). Application of Arabidopsis tissue-specific CRUC promoter in the Cre/loxP self-excision strategy for generation of marker-free oilseed rape: potential advantages and drawbacks. Acta Physiologiae Plantarum, 36(6), 1399–1409. https://doi.org/10.1007/s11738-014-1518-8.

    Article  CAS  Google Scholar 

  50. Elmayan, T., & Vaucheret, H. (1996). Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant Journal, 9(6), 787–797. https://doi.org/10.1046/j.1365-313X.1996.9060787.x.

    Article  CAS  Google Scholar 

  51. Ribeiro, T. P., Arraes, F. B. M., Lourenco-Tessutti, I. T., Silva, M. S., Lisei-de-Sa, M. E., Lucena, W. A., et al. (2017). Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnology Journal, 15(8), 997–1009. https://doi.org/10.1111/pbi.12694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Butaye, K. M. J., Cammue, B. P. A., Delaure, S. L., & De Bolle, M. F. C. (2005). Approaches to minimize variation of transgene expression in plants. Molecular Breeding, 16(1), 79–91. https://doi.org/10.1007/s11032-005-4929-9.

    Article  Google Scholar 

  53. Butaye, K. M. J., Goderis, I., Wouters, P. F. J., Pues, J., Delaure, S. L., Broekaert, W. F., et al. (2004). Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant Journal, 39(3), 440–449. https://doi.org/10.1111/j.1365-313X.2004.02144.x.

    Article  CAS  Google Scholar 

  54. Ohtakara, A. (1988). Viscosimetric assay for chitinase. Methods in Enzymology, 161, 426–430.

    Article  CAS  Google Scholar 

  55. Tronsmo, A., & Harman, G. E. (1993). Detection and quantification of N-acetyl-beta-D-glucosamidase, chitobiosidase, and endochitinase in solutions and on gels. Analytical Biochemistry, 208(1), 74–79. https://doi.org/10.1006/abio.1993.1010.

    Article  CAS  PubMed  Google Scholar 

  56. Haran, S., Schickler, H., & Chet, I. (1996). Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology-UK, 142, 2321–2331. https://doi.org/10.1099/00221287-142-9-2321.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anna Fabelova for in vitro plant care. This work was co-funded by a grant from the Slovak Grant Agency VEGA 2/0075/17 and Research Centre AgroBioTech built in the framework of European Community project Building Research Centre “AgroBioTech” ITMS 26220220180.

Author information

Authors and Affiliations

Authors

Contributions

JL and MJ and designed research. DD, MJ, MR and JM conducted the experiments. MJ analysed data. JL wrote the manuscript.

Corresponding author

Correspondence to Jana Libantova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durechova, D., Jopcik, M., Rajninec, M. et al. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Mol Biotechnol 61, 916–928 (2019). https://doi.org/10.1007/s12033-019-00214-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00214-1

Keywords

Navigation