Skip to main content

Advertisement

Log in

Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

4E-BP1:

4E-binding protein 1

Akt:

Ak transforming strain

APC:

Adenomatous polyposis coli

aCGH:

Array comparative genomic hybridization

BRAF:

V-Raf murine sarcoma viral oncogene homolog B

CAF:

Cancer-associated fibroblasts

CIMP:

CpG island methylator phenotype

circRNA:

Circular RNA

CpG:

Cytosine and guanine separated by phosphate

CRC:

Colorectal cancer

CTLA:

Cytotoxic T-lymphocyte-associated protein 4

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferases

DUSP6:

Dual-specificity phosphatase 6

ECM:

Extra cellular matrix

EGFR:

Epithelial growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FAP:

Familial adenomatous polyposis

GSK 3β:

Glycogen synthase kinase 3 beta

HAT:

Histone acetyltransferase

HIF 1α:

Hypoxia-inducible factor 1-alpha

HMT:

Histone methyltransferases

IFN-γ:

Interferon-gamma

KRAS:

Kirsten rat sarcoma

lncRNA:

Long non-coding RNA

MAPK:

Mitogen-activated protein kinase

mRNA:

Messenger RNA

miRNA:

Micro RNA

MIG6:

Mitogen-inducible gene 6

MMP:

Matrix metalloproteinases

MMR:

Mismatch repair

MSI:

Microsatellite instability

MSP:

Methylation-specific PCR

mTOR:

Mammalian target of Rapamycin

ncRNA:

Non-coding RNA

NGS:

Next generation sequencing

PD1/PDL1:

Programmed cell death receptor/ligand-1

PI3K:

Phosphoinositide 3-kinase

PI3KCA:

Phosphatidyl inositide–4,5–bisphosphonate–3-kinase catalytic subunit–α

PIP:

Phosphatidylinositol 4,5-bisphosphate

RNA:

Ribonucleic acid

RTK:

Receptor tyrosine kinase

SNP:

Single nucleotide polymorphisms

SPRY2:

Sprouty proteins

TET:

Ten-eleven translocation

TGF:

Transforming growth factor-beta

TME:

Tumour microenvironment

TP53:

Tumour protein 53

TSC:

Tuberous sclerosis complex

VEGF:

Vascular endothelial growth factors

Wnt:

Wingless-related integration site

References

  1. Arora R, Sharma S, Kumar B. Colorectal cancer: risk factors and potential of dietary probiotics in its prevention. Proc Indian Natl Sci Acad. 2022;88:528–41.

    Article  Google Scholar 

  2. Althobaiti A, Jradi H. Knowledge, attitude, and perceived barriers regarding colorectal cancer screening practices and risk factors among medical students in Saudi Arabia. BMC Med Educ. 2019;19:1–8.

    Article  Google Scholar 

  3. Liu Y, Zhang C, Wang Q, Wu K, Sun Z, Tang Z, Zhang B. Temporal trends in the disease burden of colorectal cancer with its risk factors at the global and national level from 1990 to 2019, and projections until 2044. Clin Epidemiol. 2023;15:55–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2025;2021:13.

    Google Scholar 

  5. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev/Przegląd Gastroenterologiczny. 2019;14:89–103.

    CAS  Google Scholar 

  6. Jain S, Maque J, Galoosian A, Osuna-Garcia A, May FP. Optimal strategies for colorectal cancer screening. Curr Treat Options Oncol. 2022;23:474–93.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yao T, Sun Q, Xiong K, Su Y, Zhao Q, Zhang C, Zhang L, Li X, Fang H. Optimization of screening strategies for colorectal cancer based on fecal DNA and occult blood testing. Eur J Pub Health. 2023;33:336–41.

    Article  Google Scholar 

  8. Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers. 2022;14:1732.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr. 2021;61:1787–803.

    Article  CAS  PubMed  Google Scholar 

  10. Biondi A, Basile F, Vacante M. Familial adenomatous polyposis and changes in the gut microbiota: New insights into colorectal cancer carcinogenesis. World Journal of Gastrointestinal Oncology. 2021;13:495.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ precision oncology. 2019;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Quezada-Marín JI, Lam AK, Ochiai A, Odze RD, Washington KM, Fukayama M, Rugge M, Klimstra DS, Nagtegaal ID, Tan PH. Gastrointestinal tissue-based molecular biomarkers: a practical categorisation based on the 2019 World Health Organization classification of epithelial digestive tumours. Histopathology. 2020;77:340–50.

    Article  PubMed  Google Scholar 

  13. Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, Diakosavvas M, Angelou K, Tsatsaris G, Pagkalos AJAR. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40:6009–15.

    Article  CAS  PubMed  Google Scholar 

  14. Grady WM. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Adv Cancer Res. 2021;151:425–68.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, Wang J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget. 2018;9:19443.

    Article  PubMed  Google Scholar 

  16. Zhou S, Treloar AE, Lupien M. Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations. Cancer Discov. 2016;6:1215–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong SN. Genetic and epigenetic alterations of colorectal cancer. Intestinal research. 2018;16:327–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol. 2020;17:111–30.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teeuwssen M, Fodde R. Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers. 2019;11:1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointestinal Cancer Res. 2012;5:19.

    Google Scholar 

  21. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15:585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Federico C, Bruno F, Ragusa D, Clements CS, Brancato D, Henry MP, Bridger JM, Tosi S, Saccone S. Chromosomal rearrangements and altered nuclear organization: recent mechanistic models in cancer. Cancers. 2021;13:5860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta S, Johnson SH, Vasmatzis G, Porath B, Rustin JG, Rao P, Costello BA, Leibovich BC, Thompson RH, Cheville JC. TFEB-VEGFA (6p21.1) co-amplified renal cell carcinoma: a distinct entity with potential implications for clinical management. Modern Pathol. 2017;30:998–1012.

    Article  CAS  Google Scholar 

  24. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4:127–9.

    Article  Google Scholar 

  25. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010130.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djw332.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Formica V, Sera F, Cremolini C, Riondino S, Morelli C, Arkenau H-T, Roselli M. KRAS and BRAF mutations in stage II and III colon cancer: a systematic review and meta-analysis. JNCI. 2022;114:517–27.

    Article  PubMed  Google Scholar 

  29. Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6:386. https://doi.org/10.1038/s41392-021-00780-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watanabe S, Tsuchiya K, Nishimura R, Shirasaki T, Katsukura N, Hibiya S, Okamoto R, Nakamura T, Watanabe M. TP53 mutation by CRISPR system enhances the malignant potential of colon cancer. Mol Cancer Res. 2019;17:1459–67.

    Article  CAS  PubMed  Google Scholar 

  31. Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes (Basel). 2020. https://doi.org/10.3390/genes11111342.

    Article  PubMed  Google Scholar 

  32. Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? Front Oncol. 2022;12: 819128. https://doi.org/10.3389/fonc.2022.819128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26. https://doi.org/10.1186/s12943-019-0954-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uribe ML, Marrocco I, Yarden Y. EGFR in cancer: signaling mechanisms, drugs, and acquired resistance. Cancers. 2021. https://doi.org/10.3390/cancers13112748.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-Ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, et al. EGFR-based targeted therapy for colorectal cancer-promises and challenges. Vaccines (Basel). 2022. https://doi.org/10.3390/vaccines10040499.

    Article  PubMed  Google Scholar 

  36. Alzahrani SM, Al Doghaither HA, Al-Ghafari AB. General insight into cancer: An overview of colorectal cancer. Mol Clin Oncol. 2021;15:1–8.

    Article  Google Scholar 

  37. Morkel M, Riemer P, Bläker H, Sers C. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 2015;6:20785.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim, J.W.; Mo, H.Y.; Son, H.J.; Yoo, N.J.; Ann, C.H.; Lee, S.H. Genes with dual proto-oncogene and tumor suppressor gene activities are frequently altered by protein losses in colon cancers. Pathology-Research and Practice 2023, 154659.

  39. Bian J, Dannappel M, Wan C, Firestein R. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells. 2020;9:2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers. 2021;13:2296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Testa U, Castelli G, Pelosi E. Genetic alterations of metastatic colorectal cancer. Biomedicines. 2020;8:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weber, J.S.; Dummer, R.; de Pril, V.; Lebbé, C.; Hodi, F.S.; Cancer, M.I.J. Patterns of onset and resolution of immune‐related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. 2013, 119, 1675–1682.

  43. Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: from NGS data to biological complexity in variant detection and oncological clinical practice. Biomedicines. 2022;10:2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current achievements and applications of transcriptomics in personalized cancer medicine. Int J Mol Sci. 2021;22:1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abbasi, W.; French, C.E.; Rockowitz, S.; Kenna, M.A.; Eliot Shearer, A. Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Human Genetics 2022, 1–14.

  46. Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA: A Cancer Journal for Clinicians; 2022.

    Google Scholar 

  47. Tang B, Zhu J, Zhao Z, Lu C, Liu S, Fang S, Zheng L, Zhang N, Chen M, Xu M. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden. J Adv Res. 2021;33:153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Nicolantonio F, Vitiello PP, Marsoni S, Siena S, Tabernero J, Trusolino L, Bernards R, Bardelli A. Precision oncology in metastatic colorectal cancer—From biology to medicine. Nat Rev Clin Oncol. 2021;18:506–25.

    Article  PubMed  Google Scholar 

  49. Duffy MJ, Crown J. Use of circulating tumour DNA (ctDNA) for measurement of therapy predictive biomarkers in patients with cancer. J Personal Med. 2022;12:99.

    Article  Google Scholar 

  50. Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA: A Cancer Journal for Clinicians; 2022. p. 372–401.

    Google Scholar 

  51. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81:303–11. https://doi.org/10.1111/j.1399-0004.2011.01809.x.

    Article  CAS  PubMed  Google Scholar 

  52. Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic modifications in head and neck cancer. Biochem Genet. 2020;58:213–44.

    Article  PubMed  Google Scholar 

  53. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  54. Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci. 2020;45:1–29.

    Article  Google Scholar 

  55. Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med. 2019;69:73–92.

    Article  CAS  PubMed  Google Scholar 

  56. Mueller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochimica et Biophysica Acta (BBA). 2022;1877:188722.

    Google Scholar 

  57. Ortiz-Barahona V, Joshi RS, Esteller M. Use of DNA methylation profiling in translational oncology. Seminars Cancer Biol. 2022;83:523–35.

    Article  CAS  Google Scholar 

  58. Debernardi C, Libera L, Berrino E, Sahnane N, Chiaravalli AM, Laudi C, Berselli M, Sapino A, Sessa F, Venesio T. Evaluation of global and intragenic hypomethylation in colorectal adenomas improves patient stratification and colorectal cancer risk prediction. Clin Epigenet. 2021;13:154.

    Article  CAS  Google Scholar 

  59. Vega-Benedetti AF, Loi E, Moi L, Orrù S, Ziranu P, Pretta A, Lai E, Puzzoni M, Ciccone L, Casadei-Gardini A. Colorectal cancer early detection in stool samples tracing CpG islands methylation alterations affecting gene expression. Int J Mol Sci. 2020;21:4494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Advani SM, Swartz MD, Loree J, Davis JS, Sarsashek AM, Lam M, Lee MS, Bressler J, Lopez DS, Daniel CR. Epidemiology and molecular-pathologic characteristics of CpG Island methylator phenotype (CIMP) in colorectal cancer. Clin Colorectal Cancer. 2021;20:137–47.

    Article  PubMed  Google Scholar 

  61. Chen J, Sun H, Tang W, Zhou L, Xie X, Qu Z, Chen M, Wang S, Yang T, Dai Y. DNA methylation biomarkers in stool for early screening of colorectal cancer. J Cancer. 2019;10:5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jiang D, Li T, Guo C, Tang T-S, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci. 2023;13:1–32.

    Article  Google Scholar 

  64. Acharjee S, Chauhan S, Pal R, Tomar RS. Mechanisms of DNA methylation and histone modifications. Prog Mol Biol Transl Sci. 2023;197:51–92.

    Article  PubMed  Google Scholar 

  65. Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Internal Med. 2023. https://doi.org/10.1016/j.ejim.2023.05.036.

    Article  Google Scholar 

  66. Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo XJ. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol. 2022;931:175216.

    Article  CAS  PubMed  Google Scholar 

  67. Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer. 2021;148:2375–88.

    Article  CAS  Google Scholar 

  68. Morrison O, Thakur J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin. Int J Mol Sci. 2021;22:6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zandieh, M.A.; Farahani, M.H.; Rajabi, R.; Karimi, K.; Rahmanian, P.; Razzazan, M.; Javanshir, S.; Mirzaei, S.; Paskeh, M.D.A.; Salimimoghadam, S. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacological Research 2022, 106582.

  70. He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci. 2020;16:2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arif KMT, Elliott EK, Haupt LM, Griffiths LR. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers. 2020;12:2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenko NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int. 2021;45:1583–98.

    Article  CAS  PubMed  Google Scholar 

  73. Tang J, Wang X, Xiao D, Liu S, Tao Y. The chromatin-associated RNAs in gene regulation and cancer. Mol Cancer. 2023;22:1–22.

    Article  Google Scholar 

  74. Sayad A, Najafi S, Hussen BM, Jamali E, Taheri M, Ghafouri-Fard S. The role of circular RNAs in pancreatic cancer: new players in tumorigenesis and potential biomarkers. Pathol Res Pract. 2022;232: 153833.

    Article  CAS  PubMed  Google Scholar 

  75. Yin Y, Long J, He Q, Li Y, Liao Y, He P, Zhu W. Emerging roles of circRNA in formation and progression of cancer. J Cancer. 2019;10:5015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao Y, Chen Y, Jin M, Wang J. The crosstalk between m6A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics. 2021;11:4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res. 2022;41:1–20.

    Article  Google Scholar 

  78. Loe AKH, Zhu L, Kim T-H. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med. 2023;55:22–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ullah I, Yang L, Yin F-T, Sun Y, Li X-H, Li J, Wang X-J. Multi-omics approaches in colorectal cancer screening and diagnosis, recent updates and future perspectives. Cancers. 2022;14:5545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding, Y.; Zhang, L. The Molecular Pathobiology of Malignant Process and Molecular Diagnostic Testing for Cancer. Practical Oncologic Molecular Pathology: Frequently Asked Questions 2021, 3–21.

  81. Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone modification in NSCLC: molecular mechanisms and therapeutic targets. Int J Mol Sci. 2021;22:11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mou W, Zhu L, Yang T, Lin A, Lyu Q, Guo L, Liu Z, Cheng Q, Zhang J, Luo P. Relationship between ATOH1 and tumor microenvironment in colon adenocarcinoma patients with different microsatellite instability status. Cancer Cell Int. 2022;22:1–17.

    Article  Google Scholar 

  83. Momeni-Boroujeni A, Vanderbilt C, Yousefi E, Abu-Rustum NR, Aghajanian C, Soslow RA, Ellenson LH, Weigelt B, Murali R. Landscape of chromatin remodeling gene alterations in endometrial carcinoma. Gynecol Oncol. 2023;172:54–64.

    Article  CAS  PubMed  Google Scholar 

  84. Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer. Science. 2023;379:eaw3835.

    Article  Google Scholar 

  85. Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AKY, Cheung AHK, Leung KT, et al. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2–IGF1R and Hippo–YAP1 signaling pathways. J Pathol. 2023;259:205–19. https://doi.org/10.1002/path.6033.

    Article  CAS  PubMed  Google Scholar 

  86. Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, et al. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol. 2023;20:739–76. https://doi.org/10.1038/s41423-023-01032-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang L, Liang Y, Li S, Zeng F, Meng Y, Chen Z, Liu S, Tao Y, Yu F. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis. Mol Cancer. 2019;18:36. https://doi.org/10.1186/s12943-019-0989-z.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ali A, Ahmad E, Verma R, Sahu P, Nimisha; Srivastava, S., Saluja, S.S. Identification of therapeutic targets of gallbladder cancer using multi-omics approach. Brief Funct Genom. 2023;22:109–22.

    Google Scholar 

  89. Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: from NGS data to biological complexity in variant detection and oncological clinical practice. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10092074.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Caputo F, Santini C, Bardasi C, Cerma K, Casadei-Gardini A, Spallanzani A, Andrikou K, Cascinu S, Gelsomino F. BRAF-mutated colorectal cancer: clinical and molecular insights. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215369.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hankey W, Frankel WL, Groden J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 2018;37:159–72. https://doi.org/10.1007/s10555-017-9725-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rahman S, Garrel S, Gerber M, Maitra R, Goel S. Therapeutic targets of KRAS in colorectal cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13246233.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yang H, Chen Y, Jiang Y, Wang D, Yan J, Zhou Z. TP53 mutation influences the efficacy of treatment of colorectal cancer cell lines with a combination of sirtuin inhibitors and chemotherapeutic agents. Exp Ther Med. 2020;20:1415–22. https://doi.org/10.3892/etm.2020.8818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu YF, Yu BH, Li DL, Ke HL, Guo XZ, Xiao XY. PI3K expression and PIK3CA mutations are related to colorectal cancer metastases. World J Gastroenterol. 2012;18:3745–51. https://doi.org/10.3748/wjg.v18.i28.3745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De' Angelis, G.L.; Bottarelli, L.; Azzoni, C.; De' Angelis, N.; Leandro, G.; Di Mario, F.; Gaiani, F.; Negri, F. (2018) Microsatellite instability in colorectal cancer. Acta biomedica 89, 97–101, https://doi.org/10.23750/abm.v89i9-S.7960.

  96. Pfeifer GP. Defining driver DNA methylation changes in human cancer. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19041166.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench. 2013;6:120–8.

    PubMed  Google Scholar 

  98. Rao, C.; Yamada, H. Genomic Instability and Colon Carcinogenesis: From the Perspective of Genes. Frontiers in Oncology 2013, 3.

  99. Qin J, Wen B, Liang Y, Yu W, Li H. Histone modifications and their role in colorectal cancer (Review). Pathol Oncol Res. 2020;26:2023–33. https://doi.org/10.1007/s12253-019-00663-8.

    Article  PubMed  Google Scholar 

  100. Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther. 2019;19:375–91. https://doi.org/10.1080/14737140.2019.1605905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer. 2012;18:215–22. https://doi.org/10.1097/PPO.0b013e318250c001.

    Article  CAS  Google Scholar 

  102. Cheraghi, S.; Asadzadeh, H.; Javadi, G. Dysregulated Expression of Long Non-Coding RNA MINCR and EZH2 in Colorectal Cancer. Iranian Biomed J 2022, 26, 64–69, https://doi.org/10.52547/ibj.26.1.64.

  103. Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A, Matsuda S. CircRNAs and RNA-binding proteins involved in the pathogenesis of cancers or central nervous system disorders. Non-coding RNA. 2023. https://doi.org/10.3390/ncrna9020023.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang ZH, Dang YQ, Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J Gastroenterol. 2019;25:2863–77. https://doi.org/10.3748/wjg.v25.i23.2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo L, Lee Y-T, Zhou Y, Huang Y. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol. 2022;83:487–502. https://doi.org/10.1016/j.semcancer.2020.12.022.

    Article  CAS  PubMed  Google Scholar 

  106. Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8:210. https://doi.org/10.1038/s41392-023-01480-x.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bian J, Dannappel M, Wan C, Firestein R. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells. 2020. https://doi.org/10.3390/cells9092125.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020;111:3142–54. https://doi.org/10.1111/cas.14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7:286. https://doi.org/10.1038/s41392-022-01110-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stefani C, Miricescu D, Stanescu-Spinu I-I, Nica RI, Greabu M, Totan AR, Jinga M. Growth factors, PI3K/AKT/mTOR and MAPK Signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci. 2021. https://doi.org/10.3390/ijms221910260.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li J, Ma X, Chakravarti D, Shalapour S, DePinho RA. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021;35:787–820. https://doi.org/10.1101/gad.348226.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol. 2022;237:199–238. https://doi.org/10.1002/jcp.30561.

    Article  CAS  PubMed  Google Scholar 

  113. Karim RZ, Tse GMK, Putti TC, Scolyer RA, Lee CS. The significance of the Wnt pathway in the pathology of human cancers. Pathology. 2004;36:120–8. https://doi.org/10.1080/00313020410001671957.

    Article  CAS  PubMed  Google Scholar 

  114. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81. https://doi.org/10.1016/j.biopha.2018.11.082.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang J-G, Shi Y, Hong D-F, Song M, Huang D, Wang C-Y, Zhao G. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep. 2015;5:8087. https://doi.org/10.1038/srep08087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signall. 2022;95:110350. https://doi.org/10.1016/j.cellsig.2022.110350.

    Article  CAS  Google Scholar 

  117. Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discovery Today. 2022;27:82–101. https://doi.org/10.1016/j.drudis.2021.07.007.

    Article  CAS  PubMed  Google Scholar 

  118. Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol. 2020;26:562–97. https://doi.org/10.3748/wjg.v26.i6.562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, Fleitas T, Roda D, Cervantes A. Personalized medicine: recent progress in cancer therapy. Cancers. 2020. https://doi.org/10.3390/cancers12041009.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with mek inhibitors for cancer therapy. Clin Cancer Res. 2008;14:342–6. https://doi.org/10.1158/1078-0432.CCR-07-4790.

    Article  CAS  PubMed  Google Scholar 

  121. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica. 2007;1773:1161–76. https://doi.org/10.1016/j.bbamcr.2007.01.002.

    Article  CAS  Google Scholar 

  122. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:103–19. https://doi.org/10.1517/14728222.2011.645805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 2022;85:123–54. https://doi.org/10.1016/j.semcancer.2021.05.010.

    Article  CAS  PubMed  Google Scholar 

  124. Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA methylation in cancer. Genes. 2023. https://doi.org/10.3390/genes14051075.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ortiz-Barahona V, Joshi RS, Esteller M. Use of DNA methylation profiling in translational oncology. Semin Cancer Biol. 2022;83:523–35. https://doi.org/10.1016/j.semcancer.2020.12.011.

    Article  CAS  PubMed  Google Scholar 

  126. Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 2021;19:361–74. https://doi.org/10.1158/1541-7786.MCR-20-0687.

    Article  CAS  PubMed  Google Scholar 

  127. Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HA, Sallam A-AM, Doghish AS. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: a spotlight on signaling pathways interplay — A review. Int J Biol Macromol. 2022;214:583–600. https://doi.org/10.1016/j.ijbiomac.2022.06.134.

    Article  CAS  PubMed  Google Scholar 

  128. László L, Kurilla A, Takács T, Kudlik G, Koprivanacz K, Buday L, Vas V. Recent updates on the significance of KRAS mutations in colorectal cancer biology. Cells. 2021. https://doi.org/10.3390/cells10030667.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Soleimani A, Rahmani F, Saeedi N, Ghaffarian R, Khazaei M, Ferns GA, Avan A, Hassanian SM. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem. 2019;120:19245–53. https://doi.org/10.1002/jcb.29268.

    Article  CAS  PubMed  Google Scholar 

  130. Li C, Yang X, Chen C, Cai S, Hu J. Isorhamnetin suppresses colon cancer cell growth through the PI3K-Akt-mTOR pathway. Mol Med Rep. 2014;9:935–40. https://doi.org/10.3892/mmr.2014.1886.

    Article  CAS  PubMed  Google Scholar 

  131. Ekstrand AI, Jönsson M, Lindblom A, Borg Å, Nilbert M. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Fam Cancer. 2010;9:125–9. https://doi.org/10.1007/s10689-009-9293-1.

    Article  CAS  PubMed  Google Scholar 

  132. Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD, Schmidt MH. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul. 2019;72:51–62. https://doi.org/10.1016/j.jbior.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  133. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage SJN. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

    Article  CAS  PubMed  Google Scholar 

  134. Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 2022;85:69–94. https://doi.org/10.1016/j.semcancer.2021.06.019.

    Article  CAS  PubMed  Google Scholar 

  135. Yang Y, Li S, Wang Y, Zhao Y, Li Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther. 2022;7:329. https://doi.org/10.1038/s41392-022-01168-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, et al. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochem Biophys Acta. 2022;1868:166512. https://doi.org/10.1016/j.bbadis.2022.166512.

    Article  CAS  Google Scholar 

  137. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:425. https://doi.org/10.1038/s41392-021-00828-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol. 2022;19:471–85. https://doi.org/10.1038/s41571-022-00633-1.

    Article  CAS  PubMed  Google Scholar 

  139. Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, Han Y, Chen Y, Oyang L, Lin J, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023. https://doi.org/10.1038/s12276-023-01020-1.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discovery. 2023;22:213–34. https://doi.org/10.1038/s41573-022-00615-z.

    Article  CAS  PubMed  Google Scholar 

  141. Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222011088.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117:1279–87. https://doi.org/10.1002/jcb.25496.

    Article  CAS  PubMed  Google Scholar 

  143. Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol. 2022;237:59–85. https://doi.org/10.1002/jcp.30529.

    Article  CAS  PubMed  Google Scholar 

  144. Wu B, Sodji QH, Oyelere AK. Inflammation, fibrosis and cancer: mechanisms therapeutic options and challenges. Cancers. 2022;14:552. https://doi.org/10.3390/cancers14030552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gungor MZ, Uysal M, Senturk S. The Bright and the dark side of TGF-β; signaling in hepatocellular carcinoma: mechanisms, dysregulation, and therapeutic implications. Cancers. 2022;14:940. https://doi.org/10.3390/cancers14040940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kok SY, Nakayama M, Morita A, Oshima H, Oshima M. Genetic and nongenetic mechanisms for colorectal cancer evolution. Cancer Sci. 2023;114:3478. https://doi.org/10.1111/cas.15891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 2021;501:66–82. https://doi.org/10.1016/j.canlet.2020.12.025.

    Article  CAS  PubMed  Google Scholar 

  148. Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021;6:218. https://doi.org/10.1038/s41392-021-00641-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21:104. https://doi.org/10.1186/s12943-022-01569-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huynh LK, Hipolito CJ, ten Dijke P. A Perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules. 2019;9:743. https://doi.org/10.3390/biom9110743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turati M, Mousset A, Issa N, Turtoi A, Ronca R. TGF-β mediated drug resistance in solid cancer. Cytokine Growth Factor Rev. 2023. https://doi.org/10.1016/j.cytogfr.2023.04.001.

    Article  PubMed  Google Scholar 

  152. Laha D, Grant R, Mishra P, Nilubol N. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.656908.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Angioni R, Sánchez-Rodríguez R, Viola A, Molon B. TGF-β in cancer: metabolic driver of the tolerogenic crosstalk in the tumor microenvironment. Cancers. 2021;13:401. https://doi.org/10.3390/cancers13030401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng W-J, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021;40:184. https://doi.org/10.1186/s13046-021-01987-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer. 2023;22:38. https://doi.org/10.1186/s12943-023-01748-4.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75. https://doi.org/10.1038/s41575-019-0126-x.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84. https://doi.org/10.1101/gad.314617.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol. 2015;6:208–23. https://doi.org/10.3978/j.issn.2078-6891.2014.077.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198. https://doi.org/10.1038/s41392-023-01460-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother. 2023;163: 114806. https://doi.org/10.1016/j.biopha.2023.114806.

    Article  CAS  PubMed  Google Scholar 

  161. Balasubramanian S, Priyathersini N, Johnson T. Expression of vascular endothelial growth factor (VEGF) in colorectal adenoma and carcinoma in a tertiary care center. Cureus. 2022;14: e31393. https://doi.org/10.7759/cureus.31393.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70. https://doi.org/10.1007/s00018-019-03351-7.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang C, Liu T, Yun Z, Liang B, Li X, Zhang J. Identification of angiogenesis-related subtypes, the development of prognostic models, and the landscape of tumor microenvironment infiltration in colorectal cancer. Front Pharmacol. 2023;14:1103547. https://doi.org/10.3389/fphar.2023.1103547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer-associated fibroblasts: master tumor microenvironment modifiers. Cancers. 1899;2023:15. https://doi.org/10.3390/cancers15061899.

    Article  CAS  Google Scholar 

  165. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157. https://doi.org/10.1186/s12943-019-1089-9.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22:48. https://doi.org/10.1186/s12943-023-01744-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, Ghaedi K. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9:1–14.

    Article  Google Scholar 

  168. Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang Y. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32:317.

    Article  CAS  PubMed  Google Scholar 

  169. Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023;40:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring therapeutic aspects of immune checkpoints in lung cancer. Cancers. 2023;15:543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, Gómez-Millán J, Queipo-Ortuño MI. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12:1406.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Appunni S, Rubens M, Ramamoorthy V, Tonse R, Saxena A, McGranaghan P, Kaiser A, Kotecha R. Emerging evidence on the effects of dietary factors on the gut microbiome in colorectal cancer. Front Nutr. 2021;8: 718389.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kawada K, Toda K, Sakai Y. Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol. 2017;22:651–9.

    Article  CAS  PubMed  Google Scholar 

  174. Sun L, Suo C, Li S-T, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica et Biophysica. 2018;1870:51–66.

    CAS  Google Scholar 

  175. Nojadeh JN, Sharif SB, Sakhinia E. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159.

    PubMed  PubMed Central  Google Scholar 

  176. Lizardo DY, Kuang C, Hao S, Yu J, Huang Y, Zhang L. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochem Biophys Acta. 2020;1874:188447.

    CAS  Google Scholar 

  177. Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers. 2017;9:171.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Chen Z, Shao Y, Li X. The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR. Mol Vis. 2015;21:706.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidat Med Cell Longevity. 2017;2017:1–14.

    Article  Google Scholar 

  180. Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal. 2021;78: 109858.

    Article  CAS  PubMed  Google Scholar 

  181. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.

    Article  CAS  PubMed  Google Scholar 

  182. Wang S, Liu Z, Wang L, Zhang X. NF-κB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol. 2019;13:681–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 2021;8:133–45.

    Article  CAS  PubMed  Google Scholar 

  185. Coppedè F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 2014;20:943.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149:1204–25.

    Article  CAS  PubMed  Google Scholar 

  187. Barras D. BRAF mutation in colorectal cancer: an update: supplementary issue: biomarkers for colon cancer. Biomarkers Cancer. 2015;7:BIC.S25248.

    Article  Google Scholar 

  188. Fearon ER. Molecular genetics of colorectal cancer. J Annu Rev Pathol Mech Dis. 2011;6:479–507.

    Article  CAS  Google Scholar 

  189. Ganesh S, Koser ML, Cyr WA, Chopda GR, Tao J, Shui X, Ying B, Chen D, Pandya P, Chipumuro E, et al. Direct pharmacological Inhibition of β-Catenin by RNA interference in tumors of diverse origin. Mol Cancer Ther. 2016;15:2143–54. https://doi.org/10.1158/1535-7163.Mct-16-0309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wu C, Lyu J, Yang EJ, Liu Y, Zhang B, Shim JS. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun. 2018;9:3212. https://doi.org/10.1038/s41467-018-05694-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, Chu GC, Jiang S, Hu J, Chang K, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31:370–82. https://doi.org/10.1101/gad.293449.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010;29:181–206.

    Article  CAS  PubMed  Google Scholar 

  193. Barros-Silva D, Marques CJ, Henrique R, Jerónimo C. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes. 2018;9:429.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Barchitta, M.; Quattrocchi, A.; Maugeri, A.; Vinciguerra, M.; Agodi, A.J.P.O. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. 2014, 9, 109478.

  195. Walters RJ, Williamson EJ, English DR, Young JP, Rosty C, Clendenning M, Walsh MD, Parry S, Ahnen DJ, Baron JA, et al. Association between hypermethylation of DNA repetitive elements in white blood cell DNA and early-onset colorectal cancer. Epigenetics. 2013;8:748–55. https://doi.org/10.4161/epi.25178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Li B, Gan A, Chen X, Wang X, He W, Zhang X, Huang R, Zhou S, Song X, Xu A. Diagnostic performance of DNA hypermethylation markers in peripheral blood for the detection of colorectal cancer: A meta-analysis and systematic review. J PloS one. 2016;11: e0155095.

    Article  Google Scholar 

  197. Jiang W, Wang P-G, Zhan Y, Zhang D. Prognostic value of p16 promoter hypermethylation in colorectal cancer: a meta-analysis. Cancer Invest. 2014;32:43–52. https://doi.org/10.3109/07357907.2013.861476.

    Article  CAS  PubMed  Google Scholar 

  198. Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, et al. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology. 2006;131:797–808. https://doi.org/10.1053/j.gastro.2006.06.006.

    Article  CAS  PubMed  Google Scholar 

  199. Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer. 2017;116:762–74. https://doi.org/10.1038/bjc.2017.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59. https://doi.org/10.1093/jnci/djt101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wu CWK, Reid M, Leedham S, Lui RN. The emerging era of personalized medicine in advanced colorectal cancer. J Gastroenterol Hepatol. 2022;37:1411–25.

    Article  CAS  PubMed  Google Scholar 

  202. Liu Y, Hu X, Han C, Wang L, Zhang X, He X, Lu X. Targeting tumor suppressor genes for cancer therapy. BioEssays. 2015;37:1277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Veenstra CM, Krauss JC. Emerging systemic therapies for colorectal cancer. Clin Colon Rectal Surg. 2018;31:179–91. https://doi.org/10.1055/s-0037-1602238.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, Datiles M, Eugeni M, Lam MH, Doyle LA, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs. 2015;33:720–8. https://doi.org/10.1007/s10637-015-0212-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Guidi L, Pellizzari G, Tarantino P, Valenza C, Curigliano G. Resistance to antibody-drug conjugates targeting her2 in breast cancer: molecular landscape and future challenges. Cancers. 2023. https://doi.org/10.3390/cancers15041130.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Roy S, Majumdar APN. Cancer stem cells in colorectal cancer: genetic and epigenetic changes. J Stem Cell Res Therapy. 2012. https://doi.org/10.4172/2157-7633.S7-006.

    Article  Google Scholar 

  207. Ogino S, Galon J, Fuchs CS, Dranoff G. Cancer immunology—analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol. 2011;8:711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon A. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. BioMed Res Int. 2015;2015:1.

    Article  Google Scholar 

  209. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5:19–27.

    PubMed  PubMed Central  Google Scholar 

  210. Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomarker Res. 2019;7:23. https://doi.org/10.1186/s40364-019-0174-y.

    Article  Google Scholar 

  211. Miles G, Rae J, Ramalingam SS, Pfeifer J. Genetic testing and tissue banking for personalized oncology: analytical and institutional factors. Semin Oncol. 2015;42:713–23. https://doi.org/10.1053/j.seminoncol.2015.07.013.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. J Med Sci. 2018;6:31.

    Google Scholar 

  213. Gyanani V, Haley JC, Goswami R. Challenges of current anticancer treatment approaches with focus on liposomal drug delivery systems. Pharmaceuticals. 2021;14:835. https://doi.org/10.3390/ph14090835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5:1. https://doi.org/10.1038/s41392-019-0089-y.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;9:1299. https://doi.org/10.3389/fimmu.2018.01299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Gyngell C, Douglas T, Savulescu J. The ethics of germline gene editing. J Appl Philos. 2017;34:498–513. https://doi.org/10.1111/japp.12249.

    Article  PubMed  Google Scholar 

  218. McGuire AL, Fisher R, Cusenza P, Hudson K, Rothstein MA, McGraw D, Matteson S, Glaser J, Henley DE. Confidentiality, privacy, and security of genetic and genomic test information in electronic health records: points to consider. Genet Med. 2008;10:495–9. https://doi.org/10.1097/GIM.0b013e31817a8aaa.

    Article  PubMed  Google Scholar 

  219. Trein P, Wagner J. Governing personalized health: a scoping review. Front Genet. 2021;12: 650504. https://doi.org/10.3389/fgene.2021.650504.

    Article  PubMed Central  Google Scholar 

  220. Moosavi A, Motevalizadeh Ardekani A. Role of epigenetics in biology and human diseases. Iran Biomed J. 2016;20:246–58. https://doi.org/10.22045/ibj.2016.01.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, Kumar N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86:232–50. https://doi.org/10.1016/j.critrevonc.2012.09.014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Gaurang B. Shah, Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India for kind support and guidance in manuscript preparation. The authors also extend their appreciation to L. M. College of Pharmacy, Ahmedabad, India for providing continuous library resources support throughout literature survey and data collection. The authors are also thankful to Sharaman Sci-Med Writing Association, India for writing assistance in revision 1 and providing continuous support for improvising figures dpi.

Funding

The authors declare that no funds, grants, or other support have been received during or for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HP, YS: Manuscript original first draft preparation and subsequent editing, Literature and data survey, Figures and diagram designing; PP: Manuscript draft review and editing, Referencing; MRC: Review topic conception, Design of content and skeleton, Manuscript draft review and editing; Figures and Tables conception.

Corresponding author

Correspondence to Mehul R. Chorawala.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to report.

Ethical approval

Applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postwala, H., Shah, Y., Parekh, P.S. et al. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 40, 334 (2023). https://doi.org/10.1007/s12032-023-02201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02201-8

Keywords

Navigation