Skip to main content

Epigenetic Disturbances in Colorectal Cancer

  • Chapter
  • First Online:
Epigenetic Therapy of Cancer

Abstract

Colorectal cancer (CRC) is a major contributor to cancer-related death. A sequential accumulation of genetic alterations plays a central role in the development of the disease as described in the Vogelstein model of colorectal carcinogenesis. In the last two decades, however, it has become clear that CRC cells undergo major epigenetic alterations as well. Epigenetic dysregulation is organized at multiple levels and involves DNA methylation, histone modifications, chromatin looping, and noncoding RNAs. These modifications are associated with cancer initiation and progression and represent CRCs with clinically distinct prognosis and response to therapy. Here we outline the role of epigenetic processes in CRC carcinogenesis and the possibilities of applying epigenetic alterations as biomarker for early cancer detection and tailored treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrelo R, Cheng WH, Setien F et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 23:8822–8827

    Article  Google Scholar 

  • Aguilera C, Nakagawa K, Sancho R et al (2011) c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature 7329:231–235

    Article  Google Scholar 

  • Baba Y, Nosho K, Shima K et al (2010) Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology 6:1855–1864

    Article  Google Scholar 

  • Barault L, Charon-Barra C, Jooste V et al (2008) Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res 20:8541–8546

    Article  Google Scholar 

  • Berman BP, Weisenberger DJ, Aman JF et al (2012) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 1:40–46

    Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR et al (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 6120:293–297

    Article  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D et al (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 9:1123–1136

    Article  Google Scholar 

  • Brenner C, Deplus R, Didelot C et al (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 2:336–346

    Article  Google Scholar 

  • Clements EG, Mohammad HP, Leadem BR et al (2012) DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res 40(10):4334–4346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crea F, Fornaro L, Paolicchi E et al (2012) An EZH2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Ann Oncol 23(5):1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JM, Christensen ER, Tester DJ et al (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 15:3455–3460

    Google Scholar 

  • de Sousa EMF, Colak S, Buikhuisen J et al (2011) Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 5:476–485

    Google Scholar 

  • Derks S, Postma C, Carvalho B et al (2008) Integrated analysis of chromosomal, microsatellite and epigenetic instability in colorectal cancer identifies specific associations between promoter methylation of pivotal tumour suppressor and DNA repair genes and specific chromosomal alterations. Carcinogenesis 2:434–439

    Article  Google Scholar 

  • Douglas EJ, Fiegler H, Rowan A et al (2004) Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 14:4817–4825

    Article  Google Scholar 

  • Du J, Li Y, Li J et al (2010) Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med Oncol 4:1273–1276

    Article  Google Scholar 

  • Easwaran HP, Van Neste L, Cope L et al (2010) Aberrant silencing of cancer-related genes by CpG hypermethylation occurs independently of their spatial organization in the nucleus. Cancer Res 20:8015–8024

    Article  Google Scholar 

  • Ebert MP, Model F, Mooney S et al (2006) Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 5:1418–1430

    Article  Google Scholar 

  • Ebert MP, Tanzer M, Balluff B et al (2012) TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med 1:44–53

    Article  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 35:5400–5413

    Article  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 19:1350–1354

    Article  Google Scholar 

  • Esteller M, Gonzalez S, Risques RA et al (2001) K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol 2:299–304

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 5:759–767

    Article  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 2:143–153

    Article  Google Scholar 

  • Frattini M, Gallino G, Signoroni S et al (2006) Quantitative analysis of plasma DNA in colorectal cancer patients: a novel prognostic tool. Ann N Y Acad Sci 1075:185–190

    Article  CAS  PubMed  Google Scholar 

  • Gagnon JF, Bernard O, Villeneuve L et al (2006) Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer. Clin Cancer Res 6:1850–1858

    Article  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 2:261–282

    Article  Google Scholar 

  • Gatto NM, Frucht H, Sundararajan V et al (2003) Risk of perforation after colonoscopy and sigmoidoscopy: a population-based study. J Natl Cancer Inst 3:230–236

    Article  Google Scholar 

  • Glockner SC, Dhir M, Yi JM et al (2009) Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res 11:4691–4699

    Article  Google Scholar 

  • Goelz SE, Vogelstein B, Hamilton SR et al (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 4696:187–190

    Article  Google Scholar 

  • Gonzalgo ML, Hayashida T, Bender CM et al (1998) The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res 6:1245–1252

    Google Scholar 

  • Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  CAS  PubMed  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ et al (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 6785:486–489

    Google Scholar 

  • Hawkins N, Norrie M, Cheong K et al (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 5:1376–1387

    Article  Google Scholar 

  • Hellebrekers DM, Lentjes MH, van den Bosch SM et al (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 12:3990–3997

    Article  Google Scholar 

  • Herbst A, Wallner M, Rahmig K et al (2009) Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur J Gastroenterol Hepatol 5:565–569

    Article  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 21:2042–2054

    Article  Google Scholar 

  • Herman JG, Umar A, Polyak K et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 12:6870–6875

    Article  Google Scholar 

  • Hermsen M, Postma C, Baak J et al (2002) Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 4:1109–1119

    Article  Google Scholar 

  • Hibi K, Goto T, Shirahata A et al (2012) Methylation of TFPI2 no longer detected in the serum DNA of colorectal cancer patients after curative surgery. Anticancer Res 3:787–790

    Google Scholar 

  • Hughes LA, Khalid-de Bakker CA, Smits KM et al (2012) The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta 1:77–85

    Google Scholar 

  • Iacopetta B, Grieu F, Li W et al (2006) APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer. Int J Cancer 10:2272–2278

    Article  Google Scholar 

  • Imperiale TF, Ransohoff DF, Itzkowitz SH et al (2004) Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 26:2704–2714

    Article  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2:178–186

    Article  Google Scholar 

  • Itzkowitz SH, Jandorf L, Brand R et al (2007) Improved fecal DNA test for colorectal cancer screening. Clin Gastroenterol Hepatol 1:111–117

    Article  Google Scholar 

  • Itzkowitz S, Brand R, Jandorf L et al (2008) A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol 11:2862–2870

    Article  Google Scholar 

  • Kawakami K, Matsunoki A, Kaneko M et al (2011) Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer. Cancer Sci 1:166–174

    Article  Google Scholar 

  • Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 28:11667–11672

    Article  Google Scholar 

  • Kim MS, Louwagie J, Carvalho B et al (2009) Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS One 8:e6555

    Article  Google Scholar 

  • Kogo R, Shimamura T, Mimori K et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 20:6320–6326

    Article  Google Scholar 

  • Lee S, Cho NY, Yoo EJ et al (2008) CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med 10:1657–1665

    Google Scholar 

  • Lee BB, Lee EJ, Jung EH et al (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 19:6185–6191

    Article  Google Scholar 

  • Leung WK, To KF, Man EP et al (2005) Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol 10:2274–2279

    Article  Google Scholar 

  • Li M, Chen WD, Papadopoulos N et al (2009) Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 9:858–863

    Article  Google Scholar 

  • Lofton-Day C, Model F, Devos T et al (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2:414–423

    Article  Google Scholar 

  • Maeda K, Kawakami K, Ishida Y et al (2003) Hypermethylation of the CDKN2A gene in colorectal cancer is associated with shorter survival. Oncol Rep 4:935–938

    Google Scholar 

  • Melotte V, Lentjes MH, van den Bosch SM et al (2009) N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Cancer Inst 13:916–927

    Article  Google Scholar 

  • Muller HM, Oberwalder M, Fiegl H et al (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 9417:1283–1285

    Article  Google Scholar 

  • Nakamura Y, Nishisho I, Kinzler KW et al (1991) Mutations of the adenomatous polyposis coli gene in familial polyposis coli patients and sporadic colorectal tumors. Princess Takamatsu Symp 22:285–292

    CAS  PubMed  Google Scholar 

  • Nosho K, Irahara N, Shima K et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 11:e3698

    Article  Google Scholar 

  • Ogino S, Kawasaki T, Kirkner GJ et al (2006) CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn 5:582–588

    Article  Google Scholar 

  • Ogino S, Kawasaki T, Kirkner GJ et al (2007a) Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer. Gut 11:1564–1571

    Article  Google Scholar 

  • Ogino S, Kawasaki T, Kirkner GJ et al (2007b) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 3:305–314

    Article  Google Scholar 

  • Ogino S, Meyerhardt JA, Kawasaki T et al (2007c) CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch 5:529–537

    Article  Google Scholar 

  • Ogino S, Nosho K, Kirkner GJ et al (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 23:1734–1738

    Article  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2:237–242

    Article  Google Scholar 

  • Park JH, Kim NS, Park JY et al (2010) MGMT -535G > T polymorphism is associated with prognosis for patients with metastatic colorectal cancer treated with oxaliplatin-based chemotherapy. J Cancer Res Clin Oncol 8:1135–1142

    Article  Google Scholar 

  • Ponjavic J, Oliver PL, Lunter G et al (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 8:e1000617

    Article  Google Scholar 

  • Quintero E, Castells A, Bujanda L et al (2012) Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N Engl J Med 8:697–706

    Article  Google Scholar 

  • Samowitz WS, Albertsen H, Herrick J et al (2005) Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 3:837–845

    Article  Google Scholar 

  • Samowitz WS, Slattery ML, Sweeney C et al (2007) APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res 2:165–170

    Article  Google Scholar 

  • Schuebel KE, Chen W, Cope L et al (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 9:1709–1723

    Google Scholar 

  • Shima K, Nosho K, Baba Y et al (2011) Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: cohort study and literature review. Int J Cancer 5:1080–1094

    Article  Google Scholar 

  • Smits KM, Cleven AH, Weijenberg MP et al (2008) Pharmacoepigenomics in colorectal cancer: a step forward in predicting prognosis and treatment response. Pharmacogenomics 12:1903–1916

    Article  Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 11:846–856

    Article  Google Scholar 

  • Squazzo SL, O’Geen H, Komashko VM et al (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 7:890–900

    Article  Google Scholar 

  • Straussman R, Nejman D, Roberts D et al (2009) Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 5:564–571

    Article  Google Scholar 

  • Suzuki K, Suzuki I, Leodolter A et al (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 3:199–207

    Article  Google Scholar 

  • Tanaka M, Chang P, Li Y et al (2011) Association of CHFR promoter methylation with disease recurrence in locally advanced colon cancer. Clin Cancer Res 13:4531–4540

    Article  Google Scholar 

  • Tanzer M, Balluff B, Distler J et al (2010) Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One 2:e9061

    Article  Google Scholar 

  • Tiwari VK, McGarvey KM, Licchesi JD et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 12:2911–2927

    Google Scholar 

  • Toyota M, Ahuja N, Ohe-Toyota M et al (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 15:8681–8686

    Article  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 5992:689–693

    Article  Google Scholar 

  • van Engeland M, Derks S, Smits KM et al (2011) Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 29(10):1382–1391

    Article  PubMed  Google Scholar 

  • van Rijnsoever M, Grieu F, Elsaleh H et al (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 6:797–802

    Article  Google Scholar 

  • Viré E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 7078:871–874

    Google Scholar 

  • Wang CG, Ye YJ, Yuan J et al (2010) EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World J Gastroenterol 19:2421–2427

    Article  Google Scholar 

  • Warusavitarne J, Schnitzler M (2007) The role of chemotherapy in microsatellite unstable (MSI-H) colorectal cancer. Int J Colorectal Dis 7:739–748

    Article  Google Scholar 

  • Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 8:853–862

    Article  Google Scholar 

  • Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 7:787–793

    Article  Google Scholar 

  • Xu C, Yang M, Tian J et al (2011) MALAT-1: a long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int J Oncol 1:169–175

    Google Scholar 

  • Yamaguchi S, Asao T, Nakamura J et al (2003) High frequency of DAP-kinase gene promoter methylation in colorectal cancer specimens and its identification in serum. Cancer Lett 1:99–105

    Article  Google Scholar 

  • Zauber AG, Winawer SJ, O’Brien MJ et al (2012) Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 8:687–696

    Article  Google Scholar 

  • Zhang W, Bauer M, Croner RS et al (2007) DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum 10:1618–1626; discussion 1626–1617

    Article  Google Scholar 

  • Zinn RL, Pruitt K, Eguchi S et al (2007) hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 1:194–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manon van Engeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derks, S., van Engeland, M. (2014). Epigenetic Disturbances in Colorectal Cancer. In: Lübbert, M., Jones, P. (eds) Epigenetic Therapy of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38404-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38404-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38403-5

  • Online ISBN: 978-3-642-38404-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics