Skip to main content

Advertisement

Log in

Concomitant effects of paclitaxel and celecoxib on genes involved in apoptosis of triple-negative metastatic breast cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although triple-negative breast cancer accounts for less than one-fifth of breast cancers, it has a higher rate of metastasis and mortality. This study investigated the effects of combination treatment with paclitaxel and celecoxib on the expression of genes involved in the apoptosis of triple-negative metastatic breast cancer cells. MDA-MB-231 cells were cultured and then treated with certain concentrations of celecoxib (CLX), paclitaxel (PTX), and combination of them for 24 and 48 h. Cell viability was assessed by the MTT method. The real-time PCR method was utilized to assess the expression level of the genes involved in apoptosis. Western blotting was used for evaluating protein expression. IC50 values for CLX and PTX were 73.95 μM and 3.15 μM, respectively. The results demonstrated that PTX, CLX, and PTX + CLX significantly (p < 0.05) reduced cell viability. The comparison of combination treatment with PTX showed a significant increase in caspase 3 gene expression at both time points, in Bax gene expression after 48 h, and a remarkable decrease in Bcl-2 gene expression at both times. Western blotting results were in line with genes’ expression. These findings indicate that a combination of PTX and CLX results in a significantly more reduction in cell viability of breast cancer cells. In addition, it seems CLX may be an effective agent in regulating the expression level of caspase 3, Bax, and Bcl-2 when combined with PTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Lv M, Li B, Li Y, Mao X, Yao F, Jin F. Predictive role of molecular subtypes in response to neoadjuvant chemotherapy in breast cancer patients in Northeast China. Asian Pac J Cancer Prev. 2011;12(9):2411–7.

    PubMed  Google Scholar 

  2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48. https://doi.org/10.1056/NEJMra1001389.

    Article  CAS  PubMed  Google Scholar 

  3. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dawood S, Lei X, Litton JK, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM. Impact of body mass index on survival outcome among women with early stage triple-negative breast cancer. Clin Breast Cancer. 2012;12(5):364–72.

    Article  PubMed  Google Scholar 

  5. De Giorgi U, Rosti G, Frassineti L, Kopf B, Giovannini N, Zumaglini F, et al. High-dose chemotherapy for triple negative breast cancer. Ann Oncol. 2007;18(1):202–3.

    Article  PubMed  Google Scholar 

  6. Brady-West DC, McGrowder DA. Triple negative breast cancer: therapeutic and prognostic implications. Asian Pac J Cancer Prev. 2011;12(8):2139–43.

    PubMed  Google Scholar 

  7. Choi J, Jung W-H, Koo JS. Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol. 2012;27(11):1481–93.

    PubMed  Google Scholar 

  8. Vaklavas C, Forero-Torres A. How do i treat “triple-negative” disease. Curr Treat Options Oncol. 2011;12(4):369–88.

    Article  PubMed  Google Scholar 

  9. de Ruijter TC, Veeck J, de Hoon JPJ, van Engeland M, Tjan-Heijnen VC. Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol. 2011;137(2):183–92. https://doi.org/10.1007/s00432-010-0957-x.

    Article  CAS  PubMed  Google Scholar 

  10. Irvin WJ, Carey LA. What is triple-negative breast cancer? Eur J Cancer. 2008;44(18):2799–805.

    Article  CAS  PubMed  Google Scholar 

  11. Wood DE. National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening. Thorac Surg Clin. 2015;25(2):185–97.

    Article  PubMed  Google Scholar 

  12. Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Supplement 5):v8–30. https://doi.org/10.1093/annonc/mdv298.

    Article  PubMed  Google Scholar 

  13. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, Andre F, et al. 4th ESO—ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol. 2018. https://doi.org/10.1093/annonc/mdy192.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38(5):423–33.

    Article  CAS  PubMed  Google Scholar 

  15. Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998;10(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan Z, Jiang H, Zhu X, Liu X, Li J. Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting NF-kB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother. 2017;89:227–32. https://doi.org/10.1016/j.biopha.2017.02.038.

    Article  CAS  PubMed  Google Scholar 

  17. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):1–14.

    Article  Google Scholar 

  18. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  19. Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12(11):1551–70.

    Article  CAS  PubMed  Google Scholar 

  20. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002;21(57):8843–51.

    Article  CAS  PubMed  Google Scholar 

  21. Aghababazadeh M, Dorraki N, Javan FA, Fattahi AS, Gharib M, Pasdar A. Downregulation of caspase 8 in a group of Iranian breast cancer patients—a pilot study. J Egypt Natl Cancer Inst. 2017;29(4):191–5. https://doi.org/10.1016/j.jnci.2017.10.001.

    Article  Google Scholar 

  22. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351(1–2):41–58.

    Article  CAS  PubMed  Google Scholar 

  23. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993;53(19):4701–14.

    CAS  PubMed  Google Scholar 

  24. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37(3):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74(4):609–19.

    Article  Google Scholar 

  26. Sturm I, Papadopoulos S, Hillebrand T, Benter T, Lück HJ, Wolff G, et al. Impaired BAX protein expression in breast cancer: mutational analysis of the BAX and the p53 gene. Int J Cancer. 2000;87(4):517–21.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang GJ, Kimijima I, Tsuchiya A, Abe R. The role of bcl-2 expression in breast carcinomas (review). Oncol Rep. 1998;5(5):1211–6.

    CAS  PubMed  Google Scholar 

  28. Jendrossek V. Targeting apoptosis pathways by celecoxib in cancer. Cancer Lett. 2013;332:313–24.

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Zhang Q, Huang Y, Xu Z. Study on inhibitory effect of paclitaxel on MEK and ERK protein overexpression and activation in different breast cancer cell lines. Int J Clin Exp Med. 2017;10:2986–91.

    CAS  Google Scholar 

  30. Kim HJ, Yim GW, Nam EJ, Kim YT. Synergistic effect of COX-2 inhibitor on paclitaxel-induced apoptosis in the human ovarian cancer cell line OVCAR-3. Cancer Res Treat. 2014;46(1):81–92.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mehraj U, Hamid A, Nissar D, Manzoor AW. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol. 2021;87(2):147–58. https://doi.org/10.1007/s00280-020-04222-w.

    Article  PubMed  Google Scholar 

  32. Mallipeddi H, Thyagarajan A, Sahu RP. Implications of Withaferin-A for triple-negative breast cancer chemoprevention. Biomed Pharmacother. 2021;134(November 2020):111124. https://doi.org/10.1016/j.biopha.2020.111124.

    Article  CAS  PubMed  Google Scholar 

  33. Tay K-C, Tan LT-H, Chan CK, Hong SL, Chan K-G, Yap WH, et al. Formononetin: a review of its anticancer potentials and mechanisms. Front Pharmacol. 2019;10(July):1–19.

    Google Scholar 

  34. Calaf GM, Ponce-Cusi R, Carrión F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep. 2018;40(4):2381–8.

    CAS  PubMed  Google Scholar 

  35. Delgado-Carreño C, Méndez-Callejas G. Topological properties and in vitro identification of essential nodes of the paclitaxel and vincristine interactomes in PC-3 cells. Biomed J. 2019;42(5):307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liczbiński P, Bukowska B. Molecular mechanism of amygdalin action in vitro: review of the latest research. Immunopharmacol Immunotoxicol. 2018;40(3):212–8. https://doi.org/10.1080/08923973.2018.1441301.

    Article  CAS  PubMed  Google Scholar 

  37. Yadav P, Yadav R, Jain S, Vaidya A. Caspase-3: a primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des. 2021;98(1):144–65.

    Article  CAS  PubMed  Google Scholar 

  38. Bocca C, Bozzo F, Bassignana A, Miglietta A. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol Cell Biochem. 2011;350(1–2):59–70.

    Article  CAS  PubMed  Google Scholar 

  39. Jeon YW, Suh YJ. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep. 2013;29(2):819–25.

    Article  CAS  PubMed  Google Scholar 

  40. Ma Q, Gao Y, Wei DF, Jiang NH, Ding L, He X, et al. The effects of celecoxib on the proliferation and ultrastructural changes of MDA-MB-231 breast cancer cells. Ultrastruct Pathol. 2018;42(3):289–94. https://doi.org/10.1080/01913123.2018.1459996

    Article  PubMed  Google Scholar 

  41. Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res. 2005. https://doi.org/10.1186/bcr1019.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Basu GD, Pathangey LB, Tinder TL, LaGioia M, Gendler SJ, Mukherjee P. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res. 2004;2(11):632–42.

    Article  CAS  PubMed  Google Scholar 

  43. Michael MS, Badr MZ, Badawi AF. Inhibition of cyclooxygenase-2 and activation of peroxisome proliferator-activated receptor-gamma synergistically induces apoptosis and inhibits growth of human breast cancer cells. Int J Mol Med. 2003;11(6):733–6.

    CAS  PubMed  Google Scholar 

  44. Sugimoto T, Bartholomeusz C, Tari AM, Ueno NT. Adenovirus type 5 E1A-induced apoptosis in COX-2-overexpressing breast cancer cells. Breast Cancer Res. 2007;9(4):1–10.

    Article  Google Scholar 

  45. Reed S, Li H, Li C, Lin J. Celecoxib inhibits STAT3 phosphorylation and suppresses cell migration and colony forming ability in rhabdomyosarcoma cells. Biochem Biophys Res Commun. 2011;407(3):450–5.

    Article  CAS  PubMed  Google Scholar 

  46. Winfield LL, Payton-Stewart F. Celecoxib and Bcl-2: emerging possibilities for anticancer drug design. Future Med Chem. 2012;4(3):361–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was financially supported by Urmia University of Medical Sciences, Urmia, Iran (Ethical Code: IR.UMSU.REC.1399.156, Grant Number: 10243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naime Majidi Zolbanin.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayat, M., Khezri, M.R., Jafari, R. et al. Concomitant effects of paclitaxel and celecoxib on genes involved in apoptosis of triple-negative metastatic breast cancer cells. Med Oncol 40, 263 (2023). https://doi.org/10.1007/s12032-023-02119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02119-1

Keywords

Navigation