Skip to main content

Advertisement

Log in

Tumor microenvironment promotes breast cancer chemoresistance

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Breast cancer is presently the most predominant tumor type and the second leading cause of tumor-related deaths among women. Although advancements in diagnosis and therapeutics have momentously improved, chemoresistance remains an important challenge. Tumors oppose chemotherapeutic agents through a variety of mechanisms, with studies revealing that the tumor microenvironment (TME) is central to this process. The components of TME including stromal cells, immune cells, and non-stromal factors on exposure to chemotherapy promote the acquisition of resistant phenotype. Consequently, limited targeting of tumor cells leads to tumor recurrence after chemotherapy. Here, in this article, we summarize how TME alters chemotherapy responses in breast cancer. Furthermore, the role of different stromal cells viz., CAFs, TAMs, MSCs, endothelial cells, and cancer stem cells (CSC) in breast cancer chemoresistance is discussed in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

CAF:

Cancer associated fibroblast

CCL:

Chemokine (C–C motif) ligand

CCR:

Chemokine (C–C motif) receptor

CSF:

Colony-stimulating factor

ECM:

Extracellular matrix

JNKs:

C-Jun N-terminal kinases

NF-κB:

Nuclear factor κB

STAT:

Signal transduction and transcription

SPP1:

Secreted phosphoprotein 1

TAMs:

Tumor-associated macrophages

TGF-β:

Transforming growing factor-β

TNC:

Tenascin C

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA J Clin 68(6):394–424

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA J Clin 69(1):7–34

    Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    CAS  Google Scholar 

  4. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Van De Rijn M, Jeffrey SS (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    PubMed  Google Scholar 

  5. Hu X, Huang W, Fan M (2017) Emerging therapies for breast cancer. J Hematol Oncol 10(1):98

    PubMed  PubMed Central  Google Scholar 

  6. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S, Maftouh M, Ferns GA, Avan A (2018) The therapeutic potential of targeting tumor microenvironment in breast cancer: rational strategies and recent progress. J Cell Biochem 119(1):111–122

    CAS  PubMed  Google Scholar 

  8. Samadi N, Barazvan B, Rad JS (2016) Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 30:92–100

    PubMed  Google Scholar 

  9. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discovery 17(12):887–904

    CAS  PubMed  Google Scholar 

  10. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4):840

    CAS  PubMed Central  Google Scholar 

  11. Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN (2018) Therapeutically targeting tumor microenvironment–mediated drug resistance in estrogen receptor–positive breast cancer. J Exp Med 215(3):895–910

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung YY, Kim HM, Koo JS (2015) The role of cancer-associated fibroblasts in breast cancer pathobiology. Histol Histopathol 31(4):371–378

    PubMed  Google Scholar 

  13. Chaiwun B, Sukhamwang N, Trakultivakorn H, Saha B, Young L, Tsao-Wei D, Naritoku WY, Groshen S, Taylor CR, Imam SA (2011) GSTPi-positive tumour microenvironment-associated fibroblasts are significantly associated with GSTPi-negative cancer cells in paired cases of primary invasive breast cancer and axillary lymph node metastases. Br J Cancer 105(8):1224–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim HM, Jung WH, Koo JS (2015) Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Trans Med 13(1):222

    Google Scholar 

  15. Park SY, Kim HM, Koo JS (2015) Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat 149(3):727–741

    CAS  PubMed  Google Scholar 

  16. Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan A-C, Sams SB, Pillai MM, Elias AD, Robinson WA (2017) Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin Cancer Res 23(7):1710–1721

    CAS  PubMed  Google Scholar 

  17. Huelsken J, Hanahan D (2018) A subset of cancer-associated fibroblasts determines therapy resistance. Cell 172(4):643–644

    CAS  PubMed  Google Scholar 

  18. Ueno T, Utsumi J, Toi M (2015) Shimizu K (2015) Characteristic gene expression profiles of human fibroblasts and breast cancer cells in a newly developed bilateral coculture system. BioMed Res Internat 12:10–34

    Google Scholar 

  19. Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282(20):3892–3898

    CAS  PubMed  Google Scholar 

  20. Ryan MC, Orr DJA, Horgan K (1993) Fibroblast stimulation of breast cancer cell growth in a serum-free system. Br J Cancer 67(6):1268–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Outschoorn UE, Goldberg AF, Lin Z, Ko Y-H, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12(10):924–938

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL (2012) Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 14(4):1–11

    Google Scholar 

  23. Takai K, Le A, Weaver VM, Werb Z (2016) Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7(50):82889

    PubMed  PubMed Central  Google Scholar 

  24. Loeffler M, Krüger JA, Niethammer AG, Reisfeld RA (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Investig 116(7):1955–1962

    CAS  PubMed  Google Scholar 

  25. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, de Kier Joffé EB, Simian M (2012) The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat 133(2):459–471

    CAS  PubMed  Google Scholar 

  26. Sansone P, Berishaj M, Rajasekhar VK, Ceccarelli C, Chang Q, Strillacci A, Savini C, Shapiro L, Bowman RL, Mastroleo C (2017) Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Can Res 77(8):1927–1941

    CAS  Google Scholar 

  27. Mao Y, Zhang Y, Qu Q, Zhao M, Lou Y, Liu J, Chen X, Wu J, Shen K (2015) Cancer-associated fibroblasts induce trastuzumab resistance in HER2 positive breast cancer cells. Mol BioSyst 11(4):1029–1040

    CAS  PubMed  Google Scholar 

  28. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F (2018) CD10+ GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–856

    CAS  PubMed  Google Scholar 

  29. Chan T-S, Hsu C-C, Pai VC, Liao W-Y, Huang S-S, Tan K-T, Yen C-J, Hsu S-C, Chen W-Y, Shan Y-S (2016) Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J Exp Med 213(13):2967–2988

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28(6):848–865

    CAS  PubMed  Google Scholar 

  31. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mir MA, Mehraj U (2019) Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev 15(2):172–184

    CAS  Google Scholar 

  33. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):1–16

    Google Scholar 

  35. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res 77(21):e108–e110

    CAS  Google Scholar 

  36. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 12:20–45

    CAS  Google Scholar 

  37. Zhang Q-w, Liu L, Gong C-y, Shi H-s, Zeng Y-h, Wang X-z, Zhao Y-w, Wei Y-q (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7(12):e50946

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu H, Wang J, Liu Z, Wang L, Liu S, Zhang Q (2017) Jagged1 modulated tumor-associated macrophage differentiation predicts poor prognosis in patients with invasive micropapillary carcinoma of the breast. Medicine 96(16):10–23

    CAS  Google Scholar 

  39. Tiainen S, Tumelius R, Rilla K, Hämäläinen K, Tammi M, Tammi R, Kosma VM, Oikari S, Auvinen P (2015) High numbers of macrophages, especially M2-like (CD 163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66(6):873–883

    PubMed  Google Scholar 

  40. Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen P-L, Lauttia S, Tynninen O, Joensuu H (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17(1):101

    PubMed  PubMed Central  Google Scholar 

  41. Mahmoud SMA, Lee AHS, Paish EC, Macmillan RD, Ellis IO, Green AR (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65(2):159–163

    CAS  PubMed  Google Scholar 

  42. Yuan Z-Y, Luo R-Z, Peng R-J, Wang S-S, Xue C (2014) High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Therapy 7:1475

    PubMed  Google Scholar 

  43. Gwak JM, Jang MH, Kim DI, Seo AN, Park SY (2015) Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS ONE 10(4):e0125728

    PubMed  PubMed Central  Google Scholar 

  44. Mohammed ZM, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC (2012) The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 107(5):864–873

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang W-j, Wang X-h, Gao S-t, Chen C, Xu X-y, Zhou Z-h, Wu G-z, Yu Q, Xu G, Yao Y-Z (2018) Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res 222:93–101

    CAS  PubMed  Google Scholar 

  46. Klingen TA, Chen Y, Aas H, Wik E, Akslen LA (2017) Tumor-associated macrophages are strongly related to vascular invasion, non-luminal subtypes, and interval breast cancer. Hum Pathol 69:72–80

    CAS  PubMed  Google Scholar 

  47. Ali HR, Chlon L, Pharoah PDP, Markowetz F, Caldas C (2016) Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med 13(12):e1002194

    PubMed  PubMed Central  Google Scholar 

  48. Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25(23):2465–2479

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paulus P, Stanley ER, Schäfer R, Abraham D, Aharinejad S (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Can Res 66(8):4349–4356

    CAS  Google Scholar 

  51. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Olson OC, Kim H, Quail DF, Foley EA, Joyce JA (2017) Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep 19(1):101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y, Gao F (2015) Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol 32(2):14

    Google Scholar 

  54. Yan D, Wang H-W, Bowman RL, Joyce JA (2016) STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation. Cell Rep 16(11):2914–2927

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Houthuijzen JM, Daenen LGM, Roodhart JML, Oosterom I, Van Jaarsveld MTM, Govaert KM, Smith ME, Sadatmand SJ, Rosing H, Kruse F (2014) Lysophospholipids secreted by splenic macrophages induce chemotherapy resistance via interference with the DNA damage response. Nat Commun 5:5275

    CAS  PubMed  Google Scholar 

  56. Usman MW, Gao J, Zheng T, Rui C, Li T, Bian X, Cheng H, Liu P, Luo F (2018) Macrophages confer resistance to PI3K inhibitor GDC-0941 in breast cancer through the activation of NF-κB signaling. Cell Death Dis 9(8):1–12

    Google Scholar 

  57. Ren G, Liu Y, Zhao X, Zhang J, Zheng B, Yuan ZR, Zhang L, Qu X, Tischfield JA, Shao C (2014) Tumor resident mesenchymal stromal cells endow naive stromal cells with tumor-promoting properties. Oncogene 33(30):4016–4020

    CAS  PubMed  Google Scholar 

  58. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol 184(10):5885–5894

    CAS  PubMed  Google Scholar 

  59. Rafii A, Mirshahi P, Poupot M, Faussat A-M, Simon A, Ducros E, Mery E, Couderc B, Lis R, Capdet J (2008) Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS ONE 3(12):e3894

    PubMed  PubMed Central  Google Scholar 

  60. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624. https://doi.org/10.1158/0008-5472.Can-10-0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY) 284(5411):143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  Google Scholar 

  62. Malfuson JV, Boutin L, Clay D, Thépenier C, Desterke C, Torossian F, Guerton B, Anginot A, de Revel T, Lataillade JJ, Le Bousse-Kerdilès MC (2014) SP/drug efflux functionality of hematopoietic progenitors is controlled by mesenchymal niche through VLA-4/CD44 axis. Leukemia 28(4):853–864. https://doi.org/10.1038/leu.2013.256

    Article  CAS  PubMed  Google Scholar 

  63. Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G (2013) Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Therapy 4(3):70. https://doi.org/10.1186/scrt221

    Article  CAS  Google Scholar 

  64. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. https://doi.org/10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  65. Daverey A, Drain AP, Kidambi S (2015) Physical intimacy of breast cancer cells with mesenchymal stem cells elicits trastuzumab resistance through src activation. Sci Rep 5:13744. https://doi.org/10.1038/srep13744

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K, Ochiya T (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Sign 7(332):ra63. https://doi.org/10.1126/scisignal.2005231

    Article  CAS  Google Scholar 

  67. Ullah M, Akbar A, Ng NN, Concepcion W, Thakor AS (2019) Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget 10(37):3435–3450. https://doi.org/10.18632/oncotarget.26952

    Article  PubMed  PubMed Central  Google Scholar 

  68. Skolekova S, Matuskova M, Bohac M, Toro L, Durinikova E, Tyciakova S, Demkova L, Gursky J, Kucerova L (2016) Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells. Cell Comm Sign CCS 14:4. https://doi.org/10.1186/s12964-016-0127-0

    Article  CAS  Google Scholar 

  69. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS (2009) Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 11(3):289–298. https://doi.org/10.1080/14653240902807026

    Article  CAS  PubMed  Google Scholar 

  70. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75(3):248–255. https://doi.org/10.1016/j.yexmp.2003.06.001

    Article  CAS  PubMed  Google Scholar 

  71. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23(5):925–933

    CAS  PubMed  Google Scholar 

  72. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269(1):67–77. https://doi.org/10.1016/j.canlet.2008.04.032

    Article  CAS  PubMed  Google Scholar 

  73. Clarke MR, Imhoff FM, Baird SK (2015) Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and-2. Mol Carcinog 54(10):1214–1219

    CAS  PubMed  Google Scholar 

  74. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF (2010) Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36(3):321–331. https://doi.org/10.1055/s-0030-1253454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. https://doi.org/10.1016/j.cell.2012.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 99(7):4349–4354. https://doi.org/10.1073/pnas.072586399

    Article  CAS  PubMed  Google Scholar 

  77. Virrey JJ, Guan S, Li W, Schönthal AH, Chen TC, Hofman FM (2008) Increased survivin expression confers chemoresistance to tumor-associated endothelial cells. Am J Pathol 173(2):575–585. https://doi.org/10.2353/ajpath.2008.071079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biroccio A, Candiloro A, Mottolese M, Sapora O, Albini A, Zupi G, Del Bufalo D (2000) Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J Off Pub Federation Am Soc Exp Biol 14(5):652–660. https://doi.org/10.1096/fasebj.14.5.652

    Article  CAS  Google Scholar 

  79. Michaelis M, Klassert D, Barth S, Suhan T, Breitling R, Mayer B, Hinsch N, Doerr HW, Cinatl J, Cinatl J Jr (2009) Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mole Cancer 8:80. https://doi.org/10.1186/1476-4598-8-80

    Article  CAS  Google Scholar 

  80. Alavi AS, Acevedo L, Min W, Cheresh DA (2007) Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res 67(6):2766–2772. https://doi.org/10.1158/0008-5472.Can-06-3648

    Article  CAS  PubMed  Google Scholar 

  81. Cao Z, Scandura JM, Inghirami GG, Shido K, Ding BS, Rafii S (2017) Molecular checkpoint decisions made by subverted vascular niche transform indolent tumor cells into chemoresistant cancer stem cells. Cancer Cell 31(1):110–126. https://doi.org/10.1016/j.ccell.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  82. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu-Kaoud N, Rafii S, Rafii A (2014) Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties. PLoS ONE 9(11):e112424. https://doi.org/10.1371/journal.pone.0112424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, Espinet E, Herpel E, Menuchin A, Chang-Claude J, Hoffmeister M, Gebhardt C, Brenner H, Trumpp A, Siebel CW, Hecker M, Utikal J, Sprinzak D, Fischer A (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31(3):355–367. https://doi.org/10.1016/j.ccell.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  84. Insua-Rodríguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55

    PubMed  Google Scholar 

  85. Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D (2008) Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261(1):108–119

    CAS  PubMed  Google Scholar 

  86. Hazlehurst LA, Argilagos RF, Emmons M, Boulware D, Beam CA, Sullivan DM, Dalton WS (2006) Cell adhesion to fibronectin (CAM-DR) influences acquired mitoxantrone resistance in U937 cells. Cancer Res 66(4):2338–2345. https://doi.org/10.1158/0008-5472.Can-05-3256

    Article  CAS  PubMed  Google Scholar 

  87. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9(9):665–674

    CAS  PubMed  Google Scholar 

  88. Zhu L-C, Gao J, Hu Z-H, Schwab CL, Zhuang H-Y, Tan M-Z, Yan L-M, Liu J-J, Zhang D-Y, Lin B (2015) Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am J Cancer Res 5(2):830

    PubMed  PubMed Central  Google Scholar 

  89. Joyce MH, Lu C, James ER, Hegab R, Allen SC, Suggs LJ, Brock A (2018) Phenotypic basis for matrix stiffness-dependent chemoresistance of breast cancer cells to doxorubicin. Front Oncol 8:337. https://doi.org/10.3389/fonc.2018.00337

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lovitt CJ, Shelper TB, Avery VM (2018) Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18(1):41. https://doi.org/10.1186/s12885-017-3953-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Insua-Rodríguez J, Pein M, Hongu T, Meier J, Descot A, Lowy CM, De Braekeleer E, Sinn HP, Spaich S, Sütterlin M, Schneeweiss A, Oskarsson T (2018) Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mole Med 10(10):45. https://doi.org/10.15252/emmm.201809003

    Article  CAS  Google Scholar 

  92. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  PubMed  Google Scholar 

  93. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988

    CAS  PubMed  Google Scholar 

  94. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M, Holland-Letz T, Höfner T, Sprick M, Scharpff M, Marmé F, Sinn HP, Pantel K, Weichert W, Trumpp A (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544. https://doi.org/10.1038/nbt.2576

    Article  CAS  PubMed  Google Scholar 

  95. Kise K, Kinugasa-Katayama Y, Takakura N (2016) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 99:197–205

    CAS  PubMed  Google Scholar 

  96. Sun Y, Fan X, Zhang Q, Shi X, Xu G, Zou C (2017) Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. Tumor Biol 39(7):1010428317712592

    Google Scholar 

  97. Zhao XL, Lin Y, Jiang J, Tang Z, Yang S, Lu L, Liang Y, Liu X, Tan J, Hu XG (2017) High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol 243(3):376–389

    CAS  PubMed  Google Scholar 

  98. Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    CAS  PubMed  Google Scholar 

  99. Ryoo IG, Choi BH, Kwak MK (2015) Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 6(10):8167–8184. https://doi.org/10.18632/oncotarget.3047

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pandolfi PP (2004) Breast cancer–loss of PTEN predicts resistance to treatment. Eng J Med 351(22):2337–2338. https://doi.org/10.1056/NEJMcibr043143

    Article  CAS  Google Scholar 

  101. Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(1):136–150

    CAS  PubMed  Google Scholar 

  102. Leccia F, Del Vecchio L, Mariotti E, Di Noto R, Morel AP, Puisieux A, Salvatore F, Ansieau S (2014) ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells. Mole Cancer 13:213. https://doi.org/10.1186/1476-4598-13-213

    Article  CAS  Google Scholar 

  103. Bai X, Ni J, Beretov J, Graham P, Li Y (2018) Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 69:152–163. https://doi.org/10.1016/j.ctrv.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  104. Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Saccà M, Piccolo S, De Maria R (2015) TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34(6):681–690. https://doi.org/10.1038/onc.2014.5

    Article  CAS  PubMed  Google Scholar 

  105. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty Acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(1):136-150.e135. https://doi.org/10.1016/j.cmet.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  106. Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM (2018) Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 8(1):829. https://doi.org/10.1038/s41598-018-19339-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Das S, Kundu M, Parekh A, Bharadwaj D, Mandal M (2019) Cancer stem cell induces chemoresistance in breast cancer via macrophage migration inhibitory factor mediated activation of AKT pathway. AACR 12:10–34

    Google Scholar 

  108. Verigos J, Karakaidos P, Kordias D, Papoudou-Bai A, Evangelou Z, Harissis HV, Klinakis A, Magklara A (2019) The histone demethylase LSD1/ΚDM1A mediates chemoresistance in breast cancer via regulation of a stem cell program. Cancers 11(10):48–104. https://doi.org/10.3390/cancers11101585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission (UGC) Govt. of India, New Delhi, and the University of Kashmir, Srinagar J&K for their support. Umar Mehraj is a recipient of the junior research fellowship (JRF) from UGC-CSIR, India.

Author information

Authors and Affiliations

Authors

Contributions

MAM initiated the study, designed the plan, and edited the manuscript. MAM, UM and NAW wrote the manuscript and designed the figures and tables. MAM, NW, AHD, and UM reviewed the manuscript and arranged the references. MAM, AHD, NW, and UM read and approved the final manuscript.

Corresponding author

Correspondence to Manzoor A. Mir.

Ethics declarations

Conflict of interest

The authors declare no conflict(s) of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehraj, U., Dar, A.H., Wani, N.A. et al. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87, 147–158 (2021). https://doi.org/10.1007/s00280-020-04222-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04222-w

Keywords

Navigation