Skip to main content

Advertisement

Log in

How do I Treat “Triple-Negative” Disease

  • Breast Cancer (Carla I. Falkson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Over the recent years, there has been an increasing recognition that triple-negative breast cancer constitutes a separate, albeit heterogeneous, entity arising from distinct oncogenic pathways. Despite its aggressive clinical behavior, triple-negative disease responds favorably to cytotoxic chemotherapy resulting in high response rates. Nonetheless, the relapse rates are high and, in the absence of targeted therapies to significantly alter its natural history, the prognosis can be poor. Most of the trials conducted in the past that led to the formulation of the current guidelines have indiscriminately lumped triple-negative disease with receptor-positive subtypes. Therefore, there are relatively scant data regarding how standard approaches specifically apply for triple-negative disease. By virtue of its chemosensitive nature and high probability of achieving a complete pathologic response, neoadjuvant chemotherapy in early-stage/operable and locally-advanced/inoperable triple-negative disease is highly recommended. The indications for adjuvant chemotherapy are the same as in receptor-positive tumors, although endocrine therapies or agents targeting Her2 signaling have no established role in triple-negative disease. The optimal chemotherapy is not entirely clear; however, by virtue of their efficacy in breast cancer in general, anthracycline-containing regimens are the most widely used. The incorporation of taxanes in the regimen is supported by retrospective analyses. There is scant evidence to recommend any particular agent in the metastatic setting, although the combination of ixabepilone with capecitabine was shown to be active specifically in triple-negative disease. Given the uncertainty in the optimal management of triple-negative disease, the shortcomings of contemporary regimens, and the strong rationale of novel therapies, participation in clinical trials should be strongly considered at any stage of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

ASCO:

American Society of Clinical Oncology

BRCA1 :

Breast cancer 1 early onset

BRCA2 :

Breast cancer 2 early onset

CAP:

College of American Pathologists

DNA:

Deoxyribonucleic acid

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

Her2 (ERBB2):

Epidermal growth factor receptor 2

mTOR:

Mammalian target of rapamycin

PARP:

Poly (Adenosine Diphosphate–Ribose) Polymerase

pCR:

Pathologic complete response

PI3K:

Phosphatidylinositol 3-kinase

PR:

Progesterone receptor

RNA:

Ribonucleic acid

TBCRC:

Translational Breast Cancer Research Consortium

TRAIL:

Tumor necrosis factor-related apoptosis inducing ligand

VEGF:

Vascular endothelial growth factor

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians. 2010;60(5):277–300.

    Article  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(19):10869–74.

    Article  PubMed  CAS  Google Scholar 

  4. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(14):8418–23.

    Article  PubMed  CAS  Google Scholar 

  5. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Research. 2009;69(10):4116–24.

    Article  PubMed  CAS  Google Scholar 

  6. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. The New England Journal of Medicine. 2010;363(20):1938–48.

    Article  PubMed  CAS  Google Scholar 

  7. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    Article  PubMed  Google Scholar 

  8. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.

    Article  PubMed  CAS  Google Scholar 

  9. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2010;15 Suppl 5:39–48.

    Article  PubMed  CAS  Google Scholar 

  10. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109(9):1721–8.

    Article  PubMed  Google Scholar 

  11. Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–84.

    Article  PubMed  Google Scholar 

  12. O'Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, et al. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res. 2010;16(24):6100–10.

    Article  PubMed  Google Scholar 

  13. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994;343(8899):692–5.

    Article  PubMed  CAS  Google Scholar 

  14. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010–8.

    Article  PubMed  CAS  Google Scholar 

  15. Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010;42(10):885–92.

    Article  PubMed  CAS  Google Scholar 

  16. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24(2):157–67.

    Article  PubMed  Google Scholar 

  17. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Journal Clinical Investigation. 2011;121(7):2750–67. This genome profiling study sheds light onto the molecular heterogeneity of triple-negative disease. Cell lines representative of the triple-negative subtypes were shown to be differentially susceptible to platinum compounds, tyrosine kinase inhibitors, and androgen receptor antagonists. This study may explain the discrepant results seen in early-phase clinical trials with novel agents in triple-negative disease.

    Google Scholar 

  18. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  19. Collett K, Stefansson IM, Eide J, Braaten A, Wang H, et al. A basal epithelial phenotype is more frequent in interval breast cancers compared with screen detected tumors. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1108–12.

    Article  PubMed  CAS  Google Scholar 

  20. Crabb SJ, Cheang MC, Leung S, Immonen T, Nielsen TO, et al. Basal breast cancer molecular subtype predicts for lower incidence of axillary lymph node metastases in primary breast cancer. Clinical Breast Cancer. 2008;8(3):249–56.

    Article  PubMed  Google Scholar 

  21. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, et al. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28(10):1684–91.

    Article  PubMed  Google Scholar 

  22. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–7.

    Article  PubMed  Google Scholar 

  23. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.

    Article  PubMed  Google Scholar 

  24. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.

    Article  PubMed  CAS  Google Scholar 

  25. Early Breast Cancer Trialists' Collaborative Group. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. New England Journal Medicine. 1995;333(22):1444–55.

    Article  Google Scholar 

  26. Gwin JL, Eisenberg BL, Hoffman JP, Ottery FD, Boraas M, et al. Incidence of gross and microscopic carcinoma in specimens from patients with breast cancer after re-excision lumpectomy. Ann Surg. 1993;218(6):729–34.

    Article  PubMed  CAS  Google Scholar 

  27. Jones HA, Antonini N, Hart AA, Peterse JL, Horiot JC, et al. Impact of pathological characteristics on local relapse after breast-conserving therapy: a subgroup analysis of the EORTC boost versus no boost trial. J Clin Oncol. 2009;27(30):4939–47.

    Article  PubMed  Google Scholar 

  28. Rapiti E, Verkooijen HM, Vlastos G, Fioretta G, Neyroud-Caspar I, et al. Complete excision of primary breast tumor improves survival of patients with metastatic breast cancer at diagnosis. J Clin Oncol. 2006;24(18):2743–9.

    Article  PubMed  Google Scholar 

  29. Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17(2):460–9.

    PubMed  CAS  Google Scholar 

  30. Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. Journal National Cancer Institute. 2005;97(3):188–94.

    Article  Google Scholar 

  31. Bevacizumab, Metronomic Chemotherapy (CM), Diet and Exercise After Preoperative Chemotherapy for Breast Cancer (ABCDE), NCT00925652, accessed on July 20, 2011. Available from: http://clinicaltrials.gov/ct2/show/NCT00925652.

  32. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal National Cancer Institute. 2008;100(9):672–9.

    Article  CAS  Google Scholar 

  33. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(33):13820–5.

    Article  PubMed  CAS  Google Scholar 

  34. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85.

    Article  PubMed  Google Scholar 

  35. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21(8):1431–9.

    Article  PubMed  CAS  Google Scholar 

  36. Baldini E, Gardin G, Giannessi PG, Evangelista G, Roncella M, et al. Accelerated versus standard cyclophosphamide, epirubicin and 5-fluorouracil or cyclophosphamide, methotrexate and 5-fluorouracil: a randomized phase III trial in locally advanced breast cancer. Ann Oncol. 2003;14(2):227–32.

    Article  PubMed  CAS  Google Scholar 

  37. Untch M, Fasching PA, Konecny GE, von Koch F, Conrad U, et al. PREPARE trial: a randomized phase III trial comparing preoperative, dose-dense, dose-intensified chemotherapy with epirubicin, paclitaxel and CMF versus a standard-dosed epirubicin/cyclophosphamide followed by paclitaxel {+/−} darbepoetin alfa in primary breast cancer--results at the time of surgery. Ann Oncol. 2011 Mar 23 (in press). This study is the first one to show a benefit in complete pathologic response rate with neoadjuvant dose-dense chemotherapy in triple-negative disease. Nonetheless, the benefit did not reach statistical significance, the regimens were similar but not identical, and pCR rate in triple-negative disease was not the primary endpoint.

  38. von Minckwitz G, Kummel S, Vogel P, Hanusch C, Eidtmann H, et al. Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: phase III randomized GeparTrio trial. Journal National Cancer Institute. 2008;100(8):542–51.

    Article  Google Scholar 

  39. Steger GG, Galid A, Gnant M, Mlineritsch B, Lang A, et al. Pathologic complete response with six compared with three cycles of neoadjuvant epirubicin plus docetaxel and granulocyte colony-stimulating factor in operable breast cancer: results of ABCSG-14. J Clin Oncol. 2007;25(15):2012–8.

    Article  PubMed  CAS  Google Scholar 

  40. von Minckwitz G, Kummel S, Vogel P, Hanusch C, Eidtmann H, et al. Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. Journal National Cancer Institute. 2008;100(8):552–62.

    Article  Google Scholar 

  41. von Minckwitz G, Untch M, Nuesch E, Loibl S, Kaufmann M, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Research Treatment. 2011;125(1):145–56.

    Article  Google Scholar 

  42. Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.

    Article  Google Scholar 

  43. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 2006;295(14):1658–67.

    Article  PubMed  CAS  Google Scholar 

  44. Colleoni M, Cole BF, Viale G, Regan MM, Price KN, et al. Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Clin Oncol. 2010;28(18):2966–73.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Angulo AM, Litton JK, Broglio KR, Meric-Bernstam F, Rakkhit R, et al. High risk of recurrence for patients with breast cancer who have human epidermal growth factor receptor 2-positive, node-negative tumors 1 cm or smaller. J Clin Oncol. 2009;27(34):5700–6.

    Article  PubMed  Google Scholar 

  46. Kaplan HG, Malmgren JA, Atwood M. T1N0 triple negative breast cancer: risk of recurrence and adjuvant chemotherapy. Breast Journal. 2009;15(5):454–60.

    Article  PubMed  Google Scholar 

  47. National Comprehensive Cancer Network. Breast Cancer, Version 2.2011. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology version 2.2011.[accessed on July 17, 2011]; Available from: www.nccn.org.

  48. Early Breast Cancer Trialists' Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet. 1998;352(9132):930–42.

    Article  Google Scholar 

  49. Pritchard KI, Shepherd LE, O'Malley FP, Andrulis IL, Tu D, et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. New England Journal Medicine. 2006;354(20):2103–11.

    Article  CAS  Google Scholar 

  50. Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 2009;27(8):1168–76.

    Article  PubMed  CAS  Google Scholar 

  51. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, et al. HER2 and response to paclitaxel in node-positive breast cancer. New England Journal Medicine. 2007;357(15):1496–506.

    Article  CAS  Google Scholar 

  52. Martin M, Rodriguez-Lescure A, Ruiz A, Alba E, Calvo L, et al. Molecular predictors of efficacy of adjuvant weekly paclitaxel in early breast cancer. Breast Cancer Research Treatment. 2010;123(1):149–57.

    Article  CAS  Google Scholar 

  53. Wang S, Shi Y, Yuan Z, Wang X, Liu D, et al. Classical CMF regimen as adjuvant chemotherapy for triple-negative breast cancer may be more effective compared with anthracycline or taxane-based regimens. Medical Oncology 2011 Apr 29 (in press).

  54. Lindman H, Kellokumpu-Lehtinen PL, Huovinen R, Jukkola-Vuorinen A, Tanner M, et al. Integration of capecitabine into anthracycline- and taxane-based adjuvant therapy for triple-negative early breast cancer: Final Subgroup Analysis of the FinXX Study. American Association for Cancer Research, 33rd Annual San Antonio Breast Cancer Symposium, December 8–12; 2010; San Antonio, TX.

  55. Gluz O, Nitz UA, Harbeck N, Ting E, Kates R, et al. Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM-01 trial. Ann Oncol. 2008;19(5):861–70.

    Article  PubMed  CAS  Google Scholar 

  56. Sparano JA, Wang M, Martino S, Jones V, Perez EA, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. New England Journal Medicine. 2008;358(16):1663–71.

    Article  CAS  Google Scholar 

  57. Carrick S, Parker S, Thornton CE, Ghersi D, Simes J, et al. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane database of systematic reviews (Online). 2009(2):CD003372.

  58. Sledge GW, Neuberg D, Bernardo P, Ingle JN, Martino S, et al. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol. 2003;21(4):588–92.

    Article  PubMed  Google Scholar 

  59. Thomas ES, Gomez HL, Li RK, Chung HC, Fein LE, et al. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol. 2007;25(33):5210–7.

    Article  PubMed  CAS  Google Scholar 

  60. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275(31):23899–903.

    Article  PubMed  CAS  Google Scholar 

  61. Cancer and Leukemia Group B. Randomized Phase II 2 × 2 Factorial Trial of the Addition of Carboplatin +/− Bevacizumab to Neoadjuvant Weekly Paclitaxel Followed by Dose- Dense AC in Hormone Receptor-Poor/HER2-Negative Resectable Breast Cancer. 2011 June 9, 2011 (NCT00861705) accessed on June 9, 2011. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00861705.

  62. A Phase II Study of Cisplatin or Carboplatin for Triple-Negative Metastatic Breast Cancer and Evaluation of p63/p73 as a Biomarker of Response (NCT00483223), accessed on July 20, 2011. Available from: http://clinicaltrials.gov/ct2/show/NCT00483223.

  63. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol. 2009;20(10):1639–46.

    Article  PubMed  CAS  Google Scholar 

  64. Linderholm BK, Lindahl T, Holmberg L, Klaar S, Lennerstrand J, et al. The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Research. 2001;61(5):2256–60.

    PubMed  CAS  Google Scholar 

  65. Miles DW, Chan A, Dirix LY, Cortes J, Pivot X, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28(20):3239–47.

    Article  PubMed  CAS  Google Scholar 

  66. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. New England Journal Medicine. 2007;357(26):2666–76.

    Article  CAS  Google Scholar 

  67. Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29(10):1252–60.

    Article  PubMed  CAS  Google Scholar 

  68. O'Shaughnessy J, Miles D, Gray RJ, Dieras V, Perez EA, et al. A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). 2010 American Society of Clinical Oncology Annual Meeting, Chicago, IL; J Clin Oncol 28:15s, 2010 (suppl; abstr 1005).

  69. Burstein HJ, Elias AD, Rugo HS, Cobleigh MA, Wolff AC, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2008;26(11):1810–6.

    Article  PubMed  CAS  Google Scholar 

  70. Crown J, Dieras V, Staroslawska E, Yardley DA, Davidson N, et al. Phase III trial of sunitinib (SU) in combination with capecitabine (C) versus C in previously treated advanced breast cancer (ABC). 2010 American Society of Clinical Oncology Annual Meeting, Chicago, IL: Journal of Clinical Oncology, 28:18s (suppl; abstr LBA1011).

  71. Bergh J, Greil R, Voytko N, Makhson A, Cortes J, et al. Sunitinib (SU) in combination with docetaxel (D) versus D alone for the first-line treatment of advanced breast cancer (ABC). 2010 American Society of Clinical Oncology Annual Meeting, Chicago, IL; J Clin Oncol 28:18s, 2010 (suppl; abstr LBA1010).

  72. Phase I/II Trial of Neoadjuvant Sunitinib Administered With Weekly Paclitaxel/Carboplatin in Patients With Locally Advanced Triple-Negative Breast Cancer (NCT00887575). Accessed on July 19, 2011. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00887575.

  73. Hoeijmakers JH. DNA damage, aging, and cancer. New England Journal Medicine. 2009;361(15):1475–85.

    Article  CAS  Google Scholar 

  74. O'Shaughnessy J, Osborne C, Pippen JE, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. New England Journal Medicine. 2011;364(3):205–14.

    Article  Google Scholar 

  75. O'Shaughnessy J, Schwartzberg LS, Danso MA, Rugo HS, Miller K, et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). 2011 American Society of Clinical Oncology Annual Meeting, Chicago, IL: J Clin Oncol 29: 2011 (suppl; abstr 1007).

  76. Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. 2010 American Society of Clinical Oncology Annual Meeting, Chicago, IL; Journal of Clinical Oncology 28:15s. 2010 (suppl; abstr 1019).

  77. PARP inhibition after preoperative chemotherapy in patients with triple negative breast cancer or ER/PR +, HER2 negative with known BRCA1/2 mutations: Hoosier Oncology Group BRE09-146 (NCT01074970). Accessed on July 19, 2011. Available from: http://clinicaltrials.gov/ct2/show/NCT01074970.

  78. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25(43):5846–53.

    Article  PubMed  CAS  Google Scholar 

  79. Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, et al. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics. 2007;8:258.

    Article  PubMed  Google Scholar 

  80. Carey LA, Irvin W, Rugo H, Mayer E, Marcom PK, et al. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer 2008 American Society of Clinical Oncology Annual Meeting, Chicago, IL; Journal of Clinical Oncology 26:15s 2008 (suppl; abstr 1009).

    Google Scholar 

  81. Green MD, Francis PA, Gebski V, Harvey V, Karapetis C, et al. Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer. Ann Oncol. 2009;20(11):1813–7.

    Article  PubMed  CAS  Google Scholar 

  82. Gutteridge E, Agrawal A, Nicholson R, Leung Cheung K, Robertson J, et al. The effects of gefitinib in tamoxifen-resistant and hormone-insensitive breast cancer: a phase II study. International Journal Cancer. 2010;126(8):1806–16.

    CAS  Google Scholar 

  83. Dickler MN, Cobleigh MA, Miller KD, Klein PM, Winer EP. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Research Treatment. 2009;115(1):115–21.

    Article  CAS  Google Scholar 

  84. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Medicine. 2001;7(8):954–60.

    Article  PubMed  CAS  Google Scholar 

  85. Buchsbaum DJ, Zhou T, Grizzle WE, Oliver PG, Hammond CJ, et al. Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res. 2003;9(10 Pt 1):3731–41.

    PubMed  CAS  Google Scholar 

  86. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, et al. Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene. 2003;22(13):2034–44.

    Article  PubMed  CAS  Google Scholar 

  87. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28(7):1145–53.

    Article  PubMed  CAS  Google Scholar 

  88. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast (Edinburgh, Scotland). 2003;12(5):320–7.

    Google Scholar 

  89. Ryan PD, Tung NM, Isakoff SJ, Golshan M, Richardson A, et al. Neoadjuvant cisplatin and bevacizumab in triple negative breast cancer (TNBC): safety and efficacy. 2009 American Society of Clinical Oncology Annual Meeting, Chicago, IL; Journal of Clinical Oncology, 27:15S 2009 (suppl; abstr 551).

  90. Frasci G, Comella P, Rinaldo M, Iodice G, Di Bonito M, et al. Preoperative weekly cisplatin-epirubicin-paclitaxel with G-CSF support in triple-negative large operable breast cancer. Ann Oncol. 2009;20(7):1185–92.

    Article  PubMed  CAS  Google Scholar 

  91. Torrisi R, Balduzzi A, Ghisini R, Rocca A, Bottiglieri L, et al. Tailored preoperative treatment of locally advanced triple negative (hormone receptor negative and HER2 negative) breast cancer with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel. Cancer Chemotherapy Pharmacology. 2008;62(4):667–72.

    Article  CAS  Google Scholar 

  92. Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Research Treatment. 2009;115(2):359–63.

    Article  CAS  Google Scholar 

  93. Baselga J, Stemmer S, Pego A, Chan A, Goeminne JC, et al. Cetuximab + cisplatin in estrogen receptor-negative, progesterone receptor-negative, Her2-negative (triple-negative) metastatic breast cancer: results of the randomized phase II BALI-1 trial. American Association for Cancer Research 2010. 33rd Annual San Antonio Breast Cancer Symposium, December 8–12; 2010; San Antonio, TX.

  94. Maisano R, Zavettieri M, Azzarello D, Raffaele M, Maisano M, et al. Carboplatin and gemcitabine combination in metastatic triple-negative anthracycline- and taxane-pretreated breast cancer patients: a phase II study. Journal Chemotherapy (Florence, Italy). 2011;23(1):40–3.

    CAS  Google Scholar 

  95. Staudacher L, Cottu PH, Dieras V, Vincent-Salomon A, Guilhaume MN, et al. Platinum-based chemotherapy in metastatic triple-negative breast cancer: the Institut Curie experience. Ann Oncol. 2011;22(4):848–56.

    Article  PubMed  CAS  Google Scholar 

  96. Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, et al. Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol. 2008;19(11):1847–52.

    Article  PubMed  CAS  Google Scholar 

  97. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28(3):375–9.

    Article  PubMed  CAS  Google Scholar 

  98. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors have no conflicts of interest relevant to this manuscript to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Forero-Torres MD.

Additional information

Level of Evidence

I: Evidence comes from multiple well-designed clinical trials conducted in representative populations with consistent results.

II: Evidence comes from at least one well-designed clinical study. Strength of evidence limited by the number, quality, or consistency of the individual studies.

III: Evidence comes from well-designed nonrandomized single-group or single-cohort studies or case–control studies. Evidence also comes from retrospective analyses of prospective clinical trials.

IV: Evidence comes from well-designed nonexperimental studies such as comparative correlational, and descriptive studies.

V: Evidence comes from case reports or case series and therefore, is insufficient for recommendations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaklavas, C., Forero-Torres, A. How do I Treat “Triple-Negative” Disease. Curr. Treat. Options in Oncol. 12, 369–388 (2011). https://doi.org/10.1007/s11864-011-0168-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-011-0168-y

Keywords

Navigation