Skip to main content

Advertisement

Log in

PIM1/STAT3 axis: a potential co-targeted therapeutic approach in triple-negative breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer lacks an expression of ER, PR, and Her-2, has a poor prognosis, and there are no target therapies available. Therapeutic options to treat TNBC are limited and urgently needed. Strong evidence indicates that molecular signaling pathways have a significant function to regulate biological mechanisms and their abnormal expression endows with the development of cancer. PIM kinase is overexpressed in various human cancers including TNBC which is regulated by various signaling pathways that are crucial for cancer cell proliferation and survival and also make PIM kinase as an attractive drug target. One of the targets of the STAT3 signaling pathway is PIM1 that plays a key role in tumor progression and transformation. In this review, we accumulate the current scenario of the PIM-STAT3 axis that provides insights into the PIM1 and STAT3 inhibitors which can be developed as potential co-inhibitors as prospective anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4EBP-1:

Eukaryotic initiation factor 4E-binding protein 1

AMPK:

AMP-activated protein kinase

CBP:

CREB-binding protein

EGF:

Epidermal growth factor

eIF-2α:

Eukaryotic initiation factors 2α

ER:

Estrogen receptor

ETS:

Erythroblast Transformation Specific

GLI:

Glioma-associated oncogene

Her-2:

Human epidermal growth factor receptor-2

HIF-1:

Hypoxia-inducible factor

IL-6:

Interleukin-6

IFN-γ:

Interferon gamma

JAK:

Janus kinase

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PIM1:

Proviral integration site for Moloney murine leukemia virus-1

PR:

Progesterone receptor

SOCS 1:

Suppressor of cytokine signaling proteins 1

SOCS 3:

Suppressor of cytokine signaling proteins 3

SRC-1:

Steroid receptor coactivator-1

STAT3:

Signal transducer and activator of transcription 3

TNBC:

Triple-Negative Breast Cancer

References

  1. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. 2015;24(Suppl 2):S36-40.

    Article  PubMed  Google Scholar 

  2. Bayraktar S, Gluck S. Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res Treat. 2013;138(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  3. Nath A, et al. Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol. 2021;39(1):14.

    Article  PubMed  Google Scholar 

  4. Cuypers HT, et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 1984;37(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  5. Braso-Maristany F, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med. 2016;22(11):1303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akira S, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  7. Zhong Z, Wen Z, Darnell JE Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95–8.

    Article  CAS  PubMed  Google Scholar 

  8. Aggarwal BB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009;1171:59–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huynh J, et al. Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer. 2019;19(2):82–96.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sirkisoon SR, et al. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene. 2018;37(19):2502–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turkson J, et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther. 2004;3(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  13. Oh E, et al. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int J Cancer. 2018;143(8):1978–93.

    Article  CAS  PubMed  Google Scholar 

  14. Brault L, et al. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica. 2010;95(6):1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoover D, et al. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J Biol Chem. 1991;266(21):14018–23.

    Article  CAS  PubMed  Google Scholar 

  16. Qian KC, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem. 2005;280(7):6130–7.

    Article  CAS  PubMed  Google Scholar 

  17. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  18. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991;10(3):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bullock AN, et al. Structure and substrate specificity of the Pim-1 kinase. J Biol Chem. 2005;280(50):41675–82.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobs MD, et al. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J Biol Chem. 2005;280(14):13728–34.

    Article  CAS  PubMed  Google Scholar 

  21. Xie Y, et al. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene. 2006;25(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  22. Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015;151:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 2005;37(4):726–30.

    Article  CAS  PubMed  Google Scholar 

  24. Eichmann A, et al. Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene. 2000;19(9):1215–24.

    Article  CAS  PubMed  Google Scholar 

  25. Merkel AL, Meggers E, Ocker M. PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drugs. 2012;21(4):425–36.

    Article  CAS  PubMed  Google Scholar 

  26. Magistroni V, et al. ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells. PLoS One. 2011;6(11):e28162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Z, et al. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002;1593(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  28. Aho TL, et al. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571(1–3):43–9.

    Article  CAS  PubMed  Google Scholar 

  29. Moroy T, et al. Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci U S A. 1993;90(22):10734–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rahman Z, et al. Down-regulation of Pim-1 and Bcl-2 is accompanied with apoptosis of interleukin-6-depleted mouse B-cell hybridoma 7TD1 cells. Immunol Lett. 2001;75(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, et al. PIM kinase as an executional target in cancer. J Cancer Prev. 2018;23(3):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heinrich PC, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leeman RJ, Lui VW, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther. 2006;6(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  34. Quesnelle KM, Boehm AL, Grandis JR. STAT-mediated EGFR signaling in cancer. J Cell Biochem. 2007;102(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  35. Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.

    Article  CAS  PubMed  Google Scholar 

  36. Hashemi V, et al. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol. 2019;234(5):5478–87.

    Article  CAS  PubMed  Google Scholar 

  37. Bowman T, et al. STATs in oncogenesis. Oncogene. 2000;19(21):2474–88.

    Article  CAS  PubMed  Google Scholar 

  38. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8(4):945–54.

    CAS  PubMed  Google Scholar 

  39. Kiuchi N, et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med. 1999;189(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shirogane T, et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity. 1999;11(6):709–19.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarado Y, Giles FJ, Swords RT. The PIM kinases in hematological cancers. Expert Rev Hematol. 2012;5(1):81–96.

    Article  CAS  PubMed  Google Scholar 

  42. van der Poel HG, Zevenhoven J, Bergman AM. Pim1 regulates androgen-dependent survival signaling in prostate cancer cells. Urol Int. 2010;84(2):212–20.

    Article  PubMed  Google Scholar 

  43. Amson R, et al. The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias. Proc Natl Acad Sci U S A. 1989;86(22):8857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  45. Warnecke-Eberz U, et al. Prognostic impact of protein overexpression of the proto-oncogene PIM-1 in gastric cancer. Anticancer Res. 2009;29(11):4451–5.

    PubMed  Google Scholar 

  46. Peltola K, et al. Pim-1 kinase expression predicts radiation response in squamocellular carcinoma of head and neck and is under the control of epidermal growth factor receptor. Neoplasia. 2009;11(7):629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dhanasekaran SM, et al. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001;412(6849):822–6.

    Article  CAS  PubMed  Google Scholar 

  48. Rhodes DR, et al. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst. 2003;95(9):661–8.

    Article  CAS  PubMed  Google Scholar 

  49. Reiser-Erkan C, et al. Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma. Cancer Biol Ther. 2008;7(9):1352–9.

    Article  CAS  PubMed  Google Scholar 

  50. Warnecke-Eberz U, et al. Frequent down-regulation of pim-1 mRNA expression in non-small cell lung cancer is associated with lymph node metastases. Oncol Rep. 2008;20(3):619–24.

    PubMed  Google Scholar 

  51. Malinen M, et al. Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Mol Cell Endocrinol. 2013;365(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  52. Horiuchi D, et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med. 2016;22(11):1321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.

    Article  CAS  PubMed  Google Scholar 

  54. Guanizo AC, et al. STAT3: a multifaceted oncoprotein. Growth Factors. 2018;36(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Z, et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci. 2001;2(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  56. Yin J, et al. Inhibition of the Pim1 oncogene results in diminished visual function. PLoS One. 2012;7(12):e52177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Didichenko SA, et al. IL-3 induces a Pim1-dependent antiapoptotic pathway in primary human basophils. Blood. 2008;112(10):3949–58.

    Article  CAS  PubMed  Google Scholar 

  58. Peltola KJ, et al. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood. 2004;103(10):3744–50.

    Article  CAS  PubMed  Google Scholar 

  59. Magnuson NS, et al. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6(9):1461–78.

    Article  CAS  PubMed  Google Scholar 

  60. Avalle L, et al. STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT. 2012;1(2):65–72.

    PubMed  PubMed Central  Google Scholar 

  61. Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013:421821.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ma JH, Qin L, Li X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 2020;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang, H., et al., PIM-1 may function as an oncogene in cervical cancer via activating the EGFR signaling. Int J Biol Markers, 2020: p. 1724600820936295.

  64. Deng J, Grande F, Neamati N. Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets. 2007;7(1):91–107.

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, et al. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 2021;54(2):e12974.

    Article  CAS  PubMed  Google Scholar 

  66. Bharadwaj U, et al. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev. 2020;72(2):486–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirschner, A.N., et al., PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J Natl Cancer Inst, 2015. 107(2).

  68. Kreuz S, et al. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol Cancer. 2015;14:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iqbal A, et al. Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110alpha inhibition. Oncotarget. 2016;7(22):33192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brunen D, et al. PIM kinases are a potential prognostic biomarker and therapeutic target in neuroblastoma. Mol Cancer Ther. 2018;17(4):849–57.

    Article  CAS  PubMed  Google Scholar 

  71. Yadav, A.K., et al., AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci, 2019. 20(2).

  72. Chen LS, et al. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood. 2011;118(3):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keane NA, et al. Targeting the Pim kinases in multiple myeloma. Blood Cancer J. 2015;5:e325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marc S Raab, M.P., et al., Phase 1 Study Update of the Novel Pan-Pim Kinase Inhibitor LGH447 in Patients with Relapsed/ Refractory Multiple Myeloma. Blood 2014. 124(21): p. 301.

  75. Pablo D Garcia, P., et al., The Pan-PIM Kinase Inhibitor LGH447 Shows Activity In PIM2-Dependent Multiple Myeloma and In AML Models Blood, 2013. 122(21): p. 1666.

  76. Zhao YQ, et al. Characterization of HJ-PI01 as a novel Pim-2 inhibitor that induces apoptosis and autophagic cell death in triple-negative human breast cancer. Acta Pharmacol Sin. 2016;37(9):1237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holder S, et al. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. Mol Cancer Ther. 2007;6(1):163–72.

    Article  CAS  PubMed  Google Scholar 

  78. Jie W, et al. Inhibition of Pim-1 attenuates the proliferation and migration in nasopharyngeal carcinoma cells. Asian Pac J Trop Med. 2012;5(8):645–50.

    Article  CAS  PubMed  Google Scholar 

  79. Xia Z, et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem. 2009;52(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan RF, et al. PIM-1 kinase inhibitor SMI-4a exerts antitumor effects in chronic myeloid leukemia cells by enhancing the activity of glycogen synthase kinase 3beta. Mol Med Rep. 2017;16(4):4603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lau, Y.K., et al., Targeting STAT3 in Cancer with Nucleotide Therapeutics. Cancers (Basel), 2019. 11(11).

  82. Bharadwaj, U.K., M.M.; Tweardy, D.J, STAT3 Inhibitors in Cancer: A Comprehensive Update.InSTAT Inhibitors in Cancer, in STAT Inhibitors in Cancer, A.C. Ward, Editor. 2016, Springer International Publishing:Cham: Switzerland. p. 95–161.

  83. Yang S, et al. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. J BUON. 2019;24(3):975–81.

    PubMed  Google Scholar 

  84. Rauf A, et al. Anticancer potential of quercetin: a comprehensive review. Phytother Res. 2018;32(11):2109–30.

    Article  CAS  PubMed  Google Scholar 

  85. Song NR, et al. Quercetin suppresses invasion and migration of H-Ras-transformed MCF10A human epithelial cells by inhibiting phosphatidylinositol 3-kinase. Food Chem. 2014;142:66–71.

    Article  CAS  PubMed  Google Scholar 

  86. Seo HS, et al. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep. 2016;36(1):31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sujatha P, et al. Flavonoids of Dikamali: a phytochemical reinvestigation. Nat Prod Res. 2013;27(20):1930–2.

    Article  CAS  PubMed  Google Scholar 

  88. Lim H, et al. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol Pharm Bull. 2008;31(11):2063–7.

    Article  CAS  PubMed  Google Scholar 

  89. Cheriet, T., et al., Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin-a review. Antibiotics (Basel), 2020. 9(7).

  90. Zhou, B., et al., Pectolinarigenin suppresses pancreatic cancer cell growth by inhibiting STAT3 signaling. Natural Product Communications, 2017. 12(12): 1934578X1701201212.

  91. Zhang T, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis. 2016;7(10):e2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Y, et al. Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis. Front Pharmacol. 2019;10:1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sui JQ, Xie KP, Xie MJ. Inhibitory effect of luteolin on the proliferation of human breast cancer cell lines induced by epidermal growth factor. Sheng Li Xue Bao. 2016;68(1):27–34.

    PubMed  Google Scholar 

  94. Huang X, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial-mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. Onco Targets Ther. 2015;8:2989–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tu DG, et al. Chemotherapeutic effects of luteolin on radio-sensitivity enhancement and interleukin-6/signal transducer and activator of transcription 3 signaling repression of oral cancer stem cells. J Formos Med Assoc. 2016;115(12):1032–8.

    Article  CAS  PubMed  Google Scholar 

  96. Cook MT, et al. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:9–19.

    CAS  Google Scholar 

  97. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–98.

    CAS  PubMed  Google Scholar 

  98. Shimizu K, et al. Anti-inflammatory action of curcumin and its use in the treatment of lifestyle-related diseases. Eur Cardiol. 2019;14(2):117–22.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mahady GB, et al. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2002;22(6C):4179–81.

    CAS  PubMed  Google Scholar 

  100. Tomeh, M.A., R. Hadianamrei, and X. Zhao, A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci, 2019. 20(5).

  101. Petiti J, et al. Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways. J Cell Mol Med. 2019;23(6):4349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhardwaj A, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood. 2007;109(6):2293–302.

    Article  CAS  PubMed  Google Scholar 

  103. Kim C, et al. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPepsilon and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol. 2016;17:19.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Guo S, et al. Overexpression of Pim-1 in bladder cancer. J Exp Clin Cancer Res. 2010;29:161.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Peng YH, et al. Expression of pim-1 in tumors, tumor stroma and tumor-adjacent mucosa co-determines the prognosis of colon cancer patients. PLoS One. 2013;8(10):e76693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beier UH, et al. Overexpression of Pim-1 in head and neck squamous cell carcinomas. Int J Oncol. 2007;30(6):1381–7.

    CAS  PubMed  Google Scholar 

  107. Leung CO, et al. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget. 2015;6(13):10880–92.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lu J, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood. 2013;122(9):1610–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jimenez-Garcia MP, et al. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget. 2017;8(35):58872–86.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Xu J, et al. PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. J Exp Clin Cancer Res. 2016;35(1):133.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Valdman A, et al. Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate. 2004;60(4):367–71.

    Article  CAS  PubMed  Google Scholar 

  112. Cibull TL, et al. Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol. 2006;59(3):285–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu Y, et al. Overexpression of PIM-1 is a potential biomarker in prostate carcinoma. J Surg Oncol. 2005;92(4):326–30.

    Article  CAS  PubMed  Google Scholar 

  114. Foulks JM, et al. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia. 2014;16(5):403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Keeton EK, et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 2014;123(6):905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pierre F, et al. 7-(4H–1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg Med Chem Lett. 2011;21(22):6687–92.

    Article  CAS  PubMed  Google Scholar 

  117. Garcia PD, et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res. 2014;20(7):1834–45.

    Article  CAS  PubMed  Google Scholar 

  118. Mologni L, et al. The Novel PIM1 Inhibitor NMS-P645 Reverses PIM1-Dependent Effects on TMPRSS2/ERG Positive Prostate Cancer Cells And Shows Anti-Proliferative Activity in Combination with PI3K Inhibition. J Cancer. 2017;8(1):140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Paino T, et al. The Novel Pan-PIM Kinase Inhibitor, PIM447, Displays Dual Antimyeloma and Bone-Protective Effects, and Potently Synergizes with Current Standards of Care. Clin Cancer Res. 2017;23(1):225–38.

    Article  CAS  PubMed  Google Scholar 

  120. Schroeder RL, et al. Identification of quinones as novel PIM1 kinase inhibitors. Bioorg Med Chem Lett. 2016;26(13):3187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiang W, et al. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway. Onco Targets Ther. 2019;12:3043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bellon M, Lu L, Nicot C. Constitutive activation of Pim1 kinase is a therapeutic target for adult T-cell leukemia. Blood. 2016;127(20):2439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hiasa M, et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia. 2015;29(1):207–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank the Department of Health Research (DHR), Govt of India; New Delhi for funding SM under a DHR-Women Scientist Scheme (R.12013/07/2017-HR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilas D. Nasare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, S., Sahoo, P.K., Pal, R. et al. PIM1/STAT3 axis: a potential co-targeted therapeutic approach in triple-negative breast cancer. Med Oncol 39, 74 (2022). https://doi.org/10.1007/s12032-022-01675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01675-2

Keywords

Navigation