Skip to main content

Advertisement

Log in

PIM1: a promising target in patients with triple-negative breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancers (TNBCs) have poor prognosis, and chemotherapy remains the mainstay of therapy because of lack of discovered possible target. MYC were found overexpressed in TNBCs compared with other subtypes and especially in those resistant to chemotherapy, but the inhibition has been challenging to achieve. Recently, the cooperation of PIM1 and MYC was identified involved in cell proliferation, migration and apoptosis of TNBCs, which has been reported in hematological malignancy and prostatic cancer. Inhibition of PIM1 can promote the apoptosis of tumor cells and enhance sensitivity to chemotherapy. Notably, PIM1-null mice develop normally and are fertile, suggesting the side effects can be tolerated. Thus, PIM1 may be a promising target in TNBCs and further investigation, both in vivo and in vitro, needs to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62. doi:10.3322/caac.21203.

    Article  PubMed  Google Scholar 

  2. Newman LA, Reis-Filho JS, Morrow M, Carey LA, King TA. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Ann Surg Oncol. 2015;22(3):874–82. doi:10.1245/s10434-014-4279-0.

    Article  PubMed  Google Scholar 

  3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34. doi:10.1158/1078-0432.ccr-06-3045.

    Article  PubMed  Google Scholar 

  4. Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet (Lond, Engl). 2012;379(9814):432–44. doi:10.1016/s0140-6736(11)61625-5.

    Article  CAS  Google Scholar 

  5. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet (Lond, Engl). 2014;384(9938):164–72. doi:10.1016/s0140-6736(13)62422-8.

    Article  Google Scholar 

  6. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4(2):232–45. doi:10.1158/2159-8290.cd-13-0286.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML, et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene. 2010;29(17):2477–87. doi:10.1038/onc.2010.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR, et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 2014;123(6):905–13. doi:10.1182/blood-2013-04-495366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braso-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med. 2016;22(11):1303–13. doi:10.1038/nm.4198.

    Article  CAS  PubMed  Google Scholar 

  10. Horiuchi D, Camarda R, Zhou AY, Yau C, Momcilovic O, Balakrishnan S, et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med. 2016;22(11):1321–9. doi:10.1038/nm.4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66. doi:10.1101/gad.1712408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi:10.1101/gad.1067003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976–90. doi:10.1038/nrc2231.

    Article  CAS  PubMed  Google Scholar 

  15. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141(3):432–45. doi:10.1016/j.cell.2010.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain AN, Chin K, Borresen-Dale AL, Erikstein BK, Eynstein Lonning P, Kaaresen R, et al. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA. 2001;98(14):7952–7. doi:10.1073/pnas.151241198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96. doi:10.1084/jem.20111512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandriani S, Frengen E, Cowling VH, Pendergrass SA, Perou CM, Whitfield ML, et al. A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS ONE. 2009;4(8):e6693. doi:10.1371/journal.pone.0006693.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, et al. Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the “basal” breast cancer subgroup. PLoS ONE. 2009;4(3):e4710. doi:10.1371/journal.pone.0004710.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA. 2010;107(15):6994–9. doi:10.1073/pnas.0912708107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2(4):333–44. doi:10.1016/j.stem.2008.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507. doi:10.1038/ng.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang DW, Claassen GF, Hann SR, Cole MD. The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol. 2000;20(12):4309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14(19):2501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seo HR, Kim J, Bae S, Soh JW, Lee YS. Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in transcriptional activation of cyclin B1 by cyclin G1. J Biol Chem. 2008;283(23):15601–10. doi:10.1074/jbc.M800987200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prochownik EV, Vogt PK. Therapeutic targeting of Myc. Genes Cancer. 2010;1(6):650–9. doi:10.1177/1947601910377494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 1984;37(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  28. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989;56(4):673–82.

    Article  PubMed  Google Scholar 

  29. Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev. 2014;34(1):136–59. doi:10.1002/med.21284.

    Article  CAS  PubMed  Google Scholar 

  30. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica. 2010;95(6):1004–15. doi:10.3324/haematol.2009.017079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991;10(3):655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard T, Lonning PE, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosom Cancer. 2006;45(11):1033–40. doi:10.1002/gcc.20366.

    Article  CAS  PubMed  Google Scholar 

  33. Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res. 2009;15(2):441–51. doi:10.1158/1078-0432.ccr-08-1791.

    Article  CAS  PubMed  Google Scholar 

  34. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29(14):2013–23. doi:10.1038/onc.2009.489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bazarov AV, Hines WC, Mukhopadhyay R, Beliveau A, Melodyev S, Zaslavsky Y, et al. Telomerase activation by c-Myc in human mammary epithelial cells requires additional genomic changes. Cell Cycle (Georgetown, TX). 2009;8(20):3373–8. doi:10.4161/cc.8.20.9856.

    Article  CAS  Google Scholar 

  36. Zippo A, De Robertis A, Serafini R, Oliviero S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol. 2007;9(8):932–44. doi:10.1038/ncb1618.

    Article  CAS  PubMed  Google Scholar 

  37. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev. 2003;17(15):1841–54. doi:10.1101/gad.1105003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ, et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem. 2003;278(46):45358–67. doi:10.1074/jbc.M307933200.

    Article  CAS  PubMed  Google Scholar 

  39. Dautry F, Weil D, Yu J, Dautry-Varsat A. Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. J Biol Chem. 1988;263(33):17615–20.

    CAS  PubMed  Google Scholar 

  40. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem. 1999;274(26):18659–66.

    Article  CAS  PubMed  Google Scholar 

  41. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430–43. doi:10.1016/j.biocel.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochem Biophys Acta. 2002;1593(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  43. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008;68(13):5076–85. doi:10.1158/0008-5472.can-08-0634.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wang Z, Magnuson NS. Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res. 2007;5(9):909–22. doi:10.1158/1541-7786.mcr-06-0388.

    Article  CAS  PubMed  Google Scholar 

  45. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571(1–3):43–9. doi:10.1016/j.febslet.2004.06.050.

    Article  CAS  PubMed  Google Scholar 

  46. Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ. Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med. 1995;182(3):821–8.

    Article  CAS  PubMed  Google Scholar 

  47. Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 2005;37(4):726–30. doi:10.1016/j.biocel.2004.11.005.

    Article  CAS  PubMed  Google Scholar 

  48. Amaravadi R, Thompson CB. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Investig. 2005;115(10):2618–24. doi:10.1172/jci26273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci. 2001;2(3):167–79.

    CAS  PubMed  Google Scholar 

  50. White E. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev. 2003;17(15):1813–6. doi:10.1101/gad.1123103.

    Article  CAS  PubMed  Google Scholar 

  51. Yip-Schneider MT, Horie M, Broxmeyer HE. Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor. Blood. 1995;85(12):3494–502.

    CAS  PubMed  Google Scholar 

  52. Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I. Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and pim-1 genes in human T cells. Blood. 1999;93(6):1980–91.

    CAS  PubMed  Google Scholar 

  53. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11(1):23–34. doi:10.1038/nrc2986.

    Article  CAS  PubMed  Google Scholar 

  54. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 2004;24(13):6104–15. doi:10.1128/mcb.24.13.6104-6115.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Block KM, Hanke NT, Maine EA, Baker AF. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas. 2012;41(5):773–81. doi:10.1097/MPA.0b013e31823cdd10.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T. Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun. 2001;281(3):663–9. doi:10.1006/bbrc.2001.4405.

    Article  CAS  PubMed  Google Scholar 

  57. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res. 2005;3(3):170–81. doi:10.1158/1541-7786.mcr-04-0192.

    Article  PubMed  Google Scholar 

  58. Malinen M, Jaaskelainen T, Pelkonen M, Heikkinen S, Vaisanen S, Kosma VM, et al. Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Mol Cell Endocrinol. 2013;365(2):270–6. doi:10.1016/j.mce.2012.10.028.

    Article  CAS  PubMed  Google Scholar 

  59. Laird PW, van der Lugt NM, Clarke A, Domen J, Linders K, McWhir J, et al. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 1993;21(20):4750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abadi AH, Abouel-Ella DA, Lehmann J, Tinsley HN, Gary BD, Piazza GA, et al. Discovery of colon tumor cell growth inhibitory agents through a combinatorial approach. Eur J Med Chem. 2010;45(1):90–7. doi:10.1016/j.ejmech.2009.09.029.

    Article  CAS  PubMed  Google Scholar 

  61. Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6(9):1461–78. doi:10.2217/fon.10.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The studies with human participants or animals involved in our manuscript have been listed in references, and our team did not perform any studies with human participants or animals about PIM1 and corresponding molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Qiu, R., Li, P. et al. PIM1: a promising target in patients with triple-negative breast cancer. Med Oncol 34, 142 (2017). https://doi.org/10.1007/s12032-017-0998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0998-y

Keywords

Navigation