Skip to main content
Log in

The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebral ischemia due to hypoxia is a major cause of secondary brain injury and is associated with higher morbidity and mortality in patients with acute brain injury. Hyperoxia could improve energetic dysfunction in the brain in this setting. Our objectives were to perform a systematic review and meta-analysis of the current literature and to assess the impact of normobaric hyperoxia on brain metabolism by using cerebral microdialysis.

Methods

We searched Medline and Scopus, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement; we searched for retrospective and prospective observational studies, interventional studies, and randomized clinical trials that performed a hyperoxia challenge in patients with acute brain injury who were concomitantly monitored with cerebral microdialysis. This study was registered in PROSPERO (CRD420211295223).

Results

We included a total of 17 studies, with a total of 311 patients. A statistically significant reduction in cerebral lactate values (pooled standardized mean difference [SMD] − 0.38 [− 0.53 to − 0.23]) and lactate to pyruvate ratio values (pooled SMD − 0.20 [− 0.35 to − 0.05]) was observed after hyperoxia. However, glucose levels (pooled SMD − 0.08 [− 0.23 to 0.08]) remained unchanged after hyperoxia.

Conclusions

Normobaric hyperoxia may improve cerebral metabolic disturbances in patients with acute brain injury. The clinical impact of such effects needs to be further elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lazaridis C, Rusin CG, Robertson CS. Secondary brain injury: Predicting and preventing insults. Neuropharmacology. 2019;145(Pt B):145–52.

    Article  CAS  PubMed  Google Scholar 

  2. O’Leary RA, Nichol AD. Pathophysiology of severe traumatic brain injury. J Neurosurg Sci. 2018;62(5):542–8.

    Article  PubMed  Google Scholar 

  3. Taufique Z, May T, Meyers E, Falo C, Mayer SA, Agarwal S, Park S, Connolly ES, Claassen J, Schmidt JM. Predictors of poor quality of life 1 year after subarachnoid hemorrhage. Neurosurgery. 2016;78(2):256–64.

    Article  PubMed  Google Scholar 

  4. Lazaridis C, Robertson CS. The role of multimodal invasive monitoring in acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):509–17.

    Article  PubMed  Google Scholar 

  5. Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):2315–21.

    Article  PubMed  Google Scholar 

  6. Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol. 2010;24(4):495–509.

    Article  CAS  PubMed  Google Scholar 

  7. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(11):1341–53.

    Article  CAS  PubMed  Google Scholar 

  8. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Clausen T, Brockenbrough PB, Bullock R. Cerebral oxygenation in patients after severe head injury: monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J Neurosurg Anesthesiol. 1999;11(4):240–51.

    Article  CAS  PubMed  Google Scholar 

  10. Zauner A, Doppenberg E, Soukup J, Menzel M, Young HF, Bullock R. Extended neuromonitoring: new therapeutic opportunities? Neurol Res. 1998;20(Suppl 1):S85-90.

    Article  PubMed  Google Scholar 

  11. Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, Macmurtrie E, Maloney-Wilensky E, et al. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45 (discussion 1045).

    Article  PubMed  Google Scholar 

  12. Bardt TF, Unterberg AW, Hartl R, Kiening KL, Schneider GH, Lanksch WR. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. Acta Neurochir Suppl. 1998;71:153–6.

    CAS  PubMed  Google Scholar 

  13. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46(4):868–76 (discussion 876–868).

    PubMed  Google Scholar 

  14. Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, Christian S, LeRoux PD. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37(6):2057–63.

    Article  PubMed  Google Scholar 

  15. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50(6):1213–21 (discussion 1221–1212).

    PubMed  Google Scholar 

  16. Vath A, Kunze E, Roosen K, Meixensberger J. Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:307–9.

    CAS  PubMed  Google Scholar 

  17. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilensky E, Frangos S, Levine JM, Kofke WA, LeRoux PD. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69(1):53–63 (discussion 63).

    Article  PubMed  Google Scholar 

  18. Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36(6):1917–24.

    Article  CAS  PubMed  Google Scholar 

  19. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147(1):51–6 (discussion 56).

    Article  CAS  PubMed  Google Scholar 

  20. Lazaridis C. Cerebral oxidative metabolism failure in traumatic brain injury: “Brain shock.” J Crit Care. 2017;37:230–3.

    Article  CAS  PubMed  Google Scholar 

  21. Veenith TV, Carter EL, Geeraerts T, Grossac J, Newcombe VF, Outtrim J, Gee GS, Lupson V, Smith R, Aigbirhio FI, et al. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol. 2016;73(5):542–50.

    Article  PubMed  Google Scholar 

  22. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    Article  CAS  PubMed  Google Scholar 

  23. Wettervik TS, Engquist H, Howells T, Lenell S, Rostami E, Hillered L, Enblad P, Lewen A. Arterial oxygenation in traumatic brain injury-relation to cerebral energy metabolism, autoregulation, and clinical outcome. J Intensive Care Med. 2021;36(9):1075–83.

    Article  PubMed  Google Scholar 

  24. Diringer MN. Hyperoxia: good or bad for the injured brain? Curr Opin Crit Care. 2008;14(2):167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.

    Article  PubMed  Google Scholar 

  26. Tisdall MM, Tachtsidis I, Leung TS, Elwell CE, Smith M. Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg. 2008;109(3):424–32.

    Article  PubMed  Google Scholar 

  27. Tolias CM, Reinert M, Seiler R, Gilman C, Scharf A, Bullock MR. Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg. 2004;101(3):435–44.

    Article  PubMed  Google Scholar 

  28. Nortje J, Coles JP, Timofeev I, Fryer TD, Aigbirhio FI, Smielewski P, Outtrim JG, Chatfield DA, Pickard JD, Hutchinson PJ, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36(1):273–81.

    Article  CAS  PubMed  Google Scholar 

  29. Ghosh A, Highton D, Kolyva C, Tachtsidis I, Elwell CE, Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab. 2017;37(8):2910–20.

    Article  CAS  PubMed  Google Scholar 

  30. Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg. 2007;106(4):526–9.

    Article  PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ, Group GW. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  36. Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). In: Cochrane; 2021.

  37. Converting among effect sizes. In: Introduction to meta‐analysis. 2009. 45–49.

  38. Rice K, Higgins JPT, Lumley T. A re-evaluation of fixed effect(s) meta-analysis. J R Stat Soc Ser A Stat Soc. 2018;181(1):205–27.

    Article  Google Scholar 

  39. Hosmann A, Schnackenburg P, Rauscher S, Hopf A, Bohl I, Engel A, Brugger J, Graf A, Plöchl W, Reinprecht A et al: Brain tissue oxygen response as indicator for cerebral lactate levels in aneurysmal subarachnoid hemorrhage patients. J Neurosurg Anesthesiol. 2020.

  40. Hafner C, Pramhas S, Schaubmayr W, Assinger A, Gleiss A, Tretter EV, Klein KU, Scharbert G. Brief high oxygen concentration induces oxidative stress in leukocytes and platelets: a randomized cross-over pilot study in healthy male volunteers. Shock. 2021;56(3):384–95.

    CAS  PubMed  Google Scholar 

  41. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Investig. 1948;27(4):484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leniger-Follert E, Lübbers DW, Wrabetz W. Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures. Pflugers Arch. 1975;359(1–2):81–95.

    Article  CAS  PubMed  Google Scholar 

  43. van Santbrink H, Maas AI, Avezaat CJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38(1):21–31.

    Article  PubMed  Google Scholar 

  44. Diringer MN, Zazulia AR, Powers WJ. Does ischemia contribute to energy failure in severe TBI? Transl Stroke Res. 2011;2(4):517–23.

    Article  PubMed  Google Scholar 

  45. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86(2):241–51.

    Article  CAS  PubMed  Google Scholar 

  46. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32(7):1107–38.

    Article  CAS  PubMed  Google Scholar 

  47. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21(7):894–906.

    Article  PubMed  Google Scholar 

  48. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, Boutelle MG, Chen JW, Claassen J, Dahyot-Fizelier C, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41(9):1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Magnoni S, Ghisoni L, Locatelli M, Caimi M, Colombo A, Valeriani V, Stocchetti N. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurg. 2003;98(5):952–8.

    Article  PubMed  Google Scholar 

  50. Vilalta A, Sahuquillo J, Merino MA, Poca MA, Garnacho A, Martinez-Valverde T, Dronavalli M. Normobaric hyperoxia in traumatic brain injury: does brain metabolic state influence the response to hyperoxic challenge? J Neurotrauma. 2011;28(7):1139–48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vidal-Jorge M, Sanchez-Guerrero A, Mur-Bonet G, Castro L, Radoi A, Riveiro M, Fernandez-Prado N, Baena J, Poca MA, Sahuquillo J. Does normobaric hyperoxia cause oxidative stress in the injured brain? A microdialysis study using 8-iso-prostaglandin F2alpha as a biomarker. J Neurotrauma. 2017;34(19):2731–42.

    Article  PubMed  Google Scholar 

  52. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, Liu J. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg. 2010;112(5):1080–94.

    Article  CAS  PubMed  Google Scholar 

  53. Rockswold SB, Rockswold GL, Zaun DA, Liu J. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;118(6):1317–28.

    Article  CAS  PubMed  Google Scholar 

  54. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab. 2012;32(10):1909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ainslie PN, Shaw AD, Smith KJ, Willie CK, Ikeda K, Graham J, Macleod DB. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (Lond). 2014;126(9):661–70.

    Article  CAS  Google Scholar 

  56. Sahoo S, Sheshadri V, Sriganesh K, Madhsudana Reddy KR, Radhakrishnan M, Umamaheswara Rao GS. Effect of hyperoxia on cerebral blood flow velocity and regional oxygen saturation in patients operated on for severe traumatic brain injury-the influence of cerebral blood flow autoregulation. World Neurosurg. 2017;98:211–6.

    Article  PubMed  Google Scholar 

  57. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab. 2007;27(1):69–75.

    Article  PubMed  Google Scholar 

  58. Nishimura N, Iwasaki K, Ogawa Y, Shibata S. Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation. Aviat Space Environ Med. 2007;78(12):1121–7.

    Article  PubMed  Google Scholar 

  59. Rangel-Castilla L, Lara LR, Gopinath S, Swank PR, Valadka A, Robertson C. Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury. J Neurotrauma. 2010;27(10):1853–63.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Investigators I-R, the A, New Zealand Intensive Care Society Clinical Trials G, Mackle D, Bellomo R, Bailey M, Beasley R, Deane A, Eastwood G, Finfer S et al: Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989–98.

  61. Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15(8):573–85.

    Article  CAS  PubMed  Google Scholar 

  62. Reynolds RA, Amin SN, Jonathan SV, Tang AR, Lan M, Wang C, Bastarache JA, Ware LB, Thompson RC. Hyperoxemia and cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2021;35(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bohman LE, Pisapia JM, Sanborn MR, Frangos S, Lin E, Kumar M, Park S, Kofke WA, Stiefel MF, LeRoux PD, et al. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care. 2013;19(3):320–8.

    Article  CAS  PubMed  Google Scholar 

  64. Fukuda S, Koga Y, Fujita M, Suehiro E, Kaneda K, Oda Y, Ishihara H, Suzuki M, Tsuruta R. Hyperoxemia during the hyperacute phase of aneurysmal subarachnoid hemorrhage is associated with delayed cerebral ischemia and poor outcome: a retrospective observational study. J Neurosurg. 2019;9:1–8.

    Google Scholar 

  65. Jeon SB, Choi HA, Badjatia N, Schmidt JM, Lantigua H, Claassen J, Connolly ES, Mayer SA, Lee K. Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014;85(12):1301–7.

    Article  PubMed  Google Scholar 

  66. Yokoyama S, Hifumi T, Kawakita K, Tamiya T, Minamino T, Kuroda Y. Early hyperoxia in the intensive care unit is significantly associated with unfavorable neurological outcomes in patients with mild-to-moderate aneurysmal subarachnoid hemorrhage. Shock. 2019;51(5):593–8.

    Article  PubMed  Google Scholar 

  67. Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 2015;5(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rincon F, Kang J, Maltenfort M, Vibbert M, Urtecho J, Athar MK, Jallo J, Pineda CC, Tzeng D, McBride W, et al. Association between hyperoxia and mortality after stroke: a multicenter cohort study. Crit Care Med. 2014;42(2):387–96.

    Article  PubMed  Google Scholar 

  69. Cai G, Ru W, Xu Q, Wu J, Gong S, Yan J, Shen Y. Association between oxygen partial pressure trajectories and short-term outcomes in patients with hemorrhagic brain injury. Front Med (Lausanne). 2021;8: 681200.

    Article  Google Scholar 

  70. Ob D, Nickson C, Pilcher DV, Udy AA. Early hyperoxia in patients with traumatic brain injury admitted to intensive care in Australia and New Zealand: a retrospective multicenter cohort study. Neurocrit Care. 2018;29(3):443–51.

    Article  Google Scholar 

  71. Russell DW, Janz DR, Emerson WL, May AK, Bernard GR, Zhao Z, Koyama T, Ware LB. Early exposure to hyperoxia and mortality in critically ill patients with severe traumatic injuries. BMC Pulm Med. 2017;17(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Weeden M, Bailey M, Gabbe B, Pilcher D, Bellomo R, Udy A. Functional outcomes in patients admitted to the intensive care unit with traumatic brain injury and exposed to hyperoxia: a retrospective multicentre cohort study. Neurocrit Care. 2021;34(2):441–8.

    Article  CAS  PubMed  Google Scholar 

  73. Humaloja J, Skrifvars MB, Raj R, Wilkman E, Pekkarinen PT, Bendel S, Reinikainen M, Litonius E. The association between arterial oxygen level and outcome in neurocritically ill patients is not affected by blood pressure. Neurocrit Care. 2021;34(2):413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raj R, Bendel S, Reinikainen M, Kivisaari R, Siironen J, Lang M, Skrifvars M. Hyperoxemia and long-term outcome after traumatic brain injury. Crit Care. 2013;17(4):R177.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alali AS, McCredie VA, Golan E, Shah PS, Nathens AB. Beta blockers for acute traumatic brain injury: a systematic review and meta-analysis. Neurocrit Care. 2014;20(3):514–23.

    Article  CAS  PubMed  Google Scholar 

  76. Asher SR, Curry P, Sharma D, Wang J, O’Keefe GE, Daniel-Johnson J, Vavilala MS. Survival advantage and PaO2 threshold in severe traumatic brain injury. J Neurosurg Anesthesiol. 2013;25(2):168–73.

    Article  PubMed  Google Scholar 

  77. Lang M, Skrifvars MB, Siironen J, Tanskanen P, Ala-Peijari M, Koivisto T, Djafarzadeh S, Bendel S. A pilot study of hyperoxemia on neurological injury, inflammation and oxidative stress. Acta Anaesthesiol Scand. 2018;62(6):801–10.

    Article  CAS  PubMed  Google Scholar 

  78. Brenner M, Stein D, Hu P, Kufera J, Wooford M, Scalea T. Association between early hyperoxia and worse outcomes after traumatic brain injury. Arch Surg. 2012;147(11):1042–6.

    Article  PubMed  Google Scholar 

  79. Davis DP, Meade W, Sise MJ, Kennedy F, Simon F, Tominaga G, Steele J, Coimbra R. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–23.

    Article  PubMed  Google Scholar 

  80. Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, Donati A. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(6):711.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Khan R, Alromaih S, Alshabanat H, Alshanqiti N, Aldhuwaihy A, Almohanna SA, Alqasem M, Al-Dorzi H. The Impact of Hyperoxia Treatment on Neurological Outcomes and Mortality in Moderate to Severe Traumatic Brain Injured Patients. J Crit Care Med (Targu Mures). 2021;7(3):227–36.

    Article  Google Scholar 

  82. Quintard H, Patet C, Suys T, Marques-Vidal P, Oddo M. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocrit Care. 2015;22(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  83. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg. 1999;91(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  84. Reinert M, Barth A, Rothen HU, Schaller B, Takala J, Seiler RW. Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir (Wien). 2003;145(5):341–9 (discussion 349–350).

    Article  CAS  Google Scholar 

  85. Hosmann A, Schnackenburg P, Rauscher S, Hopf A, Bohl I, Engel A, Brugger J, Graf A, Plochl W, Reinprecht A et al. Brain tissue oxygen response as indicator for cerebral lactate levels in aneurysmal subarachnoid hemorrhage patients. J Neurosurg Anesthesiol. 2020.

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Authorship requirements have been met, and the final manuscript was approved by all authors. GG, EGB and FST conceived the study; EGB, GG, AM performed the screening and selected the articles for the systematic review. SF, AM and GG extracted the data from the articles; EGB, GG, FST conducted the statistical analysis. MO, FST and JC performed quality analysis. GG, EGB, SF, AM and FST wrote the first draft of the paper; MO, SS, LP, FA, JC revised the text for intellectual content.

Corresponding author

Correspondence to Elisa Gouvêa Bogossian.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest regarding this article.

Ethical approval/informed consent

The study followed ethical guidelines and was approved by the Ethics Committee of Erasme Hospital protocol number P2019/074 (Université Libre de Bruxelles). Informed consent was obtained from the families/legal representatives of all study participants and confirmed by the participant after recovery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannì, G., Minini, A., Fratino, S. et al. The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis. Neurocrit Care 37, 547–557 (2022). https://doi.org/10.1007/s12028-022-01529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01529-9

Keywords

Navigation