Skip to main content
Log in

Glibenclamide Prevents Water Diffusion Abnormality in the Brain After Cardiac Arrest in Rats

  • Translational research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Glibenclamide (GBC) improves neurological outcome after cardiac arrest (CA) in rats. In this study, we sought to elucidate the mechanism responsible for the neuroprotective effects of GBC by using a high-field MRI system.

Methods

Male Sprague–Dawley rats were subjected to 10-min asphyxial CA followed by cardiopulmonary resuscitation (CPR). Diffusion-weighted imaging (DWI) as well as conventional T2-weighted imaging was conducted prior to CA and at 24, 48, and 72 h after resuscitation. Afterward, histological examination was performed.

Results

Twelve rats were randomized to receive GBC (n = 6) or vehicle (n = 6) at 15 min after return of spontaneous circulation, while four rats were set as sham control. Rats that underwent CA/CPR and received vehicle exhibited distinct neurological deficit, which was alleviated by GBC treatment. Marked water diffusion abnormality as demonstrated by hyperintense DWI in vulnerable regions of the brain was detected after CA/CPR, with the most prominent hyperintense DWI observed in the hippocampal CA1 region at 72 h. Consistently, histological examination revealed neuronal swelling, dendritic injury, and activation of astrocytes and microglia in the hippocampal CA1 region in vehicle-treated rats. Correlation analysis revealed that the ADC values in the hippocampus were significantly correlated with the histological findings (all p < 0.05).

Conclusion

These results suggest that the neuroprotective effects of GBC after CA was exerted, as least in part, through prevention of water diffusion abnormality, namely brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Girotra S, van Diepen S, Nallamothu BK, Carrel M, Vellano K, Anderson ML, et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation. 2016;133:2159–68.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Youn TS, Maciel CB, Greer DM. cerebral edema after cardiac arrest: Tell tale sign of catastrophic injury or a treatable complication? Neurocrit Care. 2016;24:151–2.

    Article  PubMed  Google Scholar 

  3. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang K, Gu Y, Hu Y, Ji Z, Wang S, Lin Z, et al. Glibenclamide improves survival and neurologic outcome after cardiac arrest in rats. Crit Care Med. 2015;43:e341–9.

    Article  PubMed  CAS  Google Scholar 

  5. Huang K, Wang Z, Gu Y, Hu Y, Ji Z, Wang S, et al. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats. J Am Heart Assoc. 2016;5:e3465.

    Google Scholar 

  6. Torbey MT, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000;31:2163–7.

    Article  PubMed  CAS  Google Scholar 

  7. von Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017;59:545–53.

    Article  Google Scholar 

  8. Choi SP, Park KN, Park HK, Kim JY, Youn CS, Ahn KJ, et al. Diffusion-weighted magnetic resonance imaging for predicting the clinical outcome of comatose survivors after cardiac arrest: a cohort study. Crit Care. 2010;14:R17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Walberer M, Blaes F, Stolz E, Muller C, Schoenburg M, Tschernatsch M, et al. Midline-shift corresponds to the amount of brain edema early after hemispheric stroke–an MRI study in rats. J Neurosurg Anesthesiol. 2007;19:105–10.

    Article  PubMed  Google Scholar 

  10. Chen L, Fan X, Jin G, Wan X, Qiu R, Yi G, et al. Treatment of rat with traumatic brain injury and MR tracing in vivo via combined transplantation of bone marrow stromal cells labeled with superparamagnetic iron oxide and Schwann cells. J Biomed Nanotechnol. 2014;10:205–15.

    Article  PubMed  CAS  Google Scholar 

  11. Suleymanova EM, Gulyaev MV, Abbasova KR. Structural alterations in the rat brain and behavioral impairment after status epilepticus: an MRI study. Neuroscience. 2016;315:79–90.

    Article  PubMed  CAS  Google Scholar 

  12. Minamishima S, Kida K, Tokuda K, Wang H, Sips PY, Kosugi S, et al. Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation. 2011;124:1645–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Allegrini PR, Sauer D. Application of magnetic resonance imaging to the measurement of neurodegeneration in rat brain: MRI data correlate strongly with histology and enzymatic analysis. Magn Reson Imaging. 1992;10:773–8.

    Article  PubMed  CAS  Google Scholar 

  14. Yan G, Dai Z, Xuan Y, Wu R. Early metabolic changes following ischemia onset in rats: an in vivo diffusion-weighted imaging and 1H-magnetic resonance spectroscopy study at 7.0 T. Mol Med Rep. 2015;11:4109–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Geocadin RG, Ghodadra R, Kimura T, Lei H, Sherman DL, Hanley DF, et al. A novel quantitative EEG injury measure of global cerebral ischemia. Clin Neurophysiol. 2000;111:1779–87.

    Article  PubMed  CAS  Google Scholar 

  16. Hayashida K, Sano M, Kamimura N, Yokota T, Suzuki M, Ohta S, et al. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest, independent of targeted temperature management. Circulation. 2014;130:2173–80.

    Article  PubMed  CAS  Google Scholar 

  17. Wijman CAC, Mlynash M, Finley Caulfield A, Hsia AW, Eyngorn I, Bammer R, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;65:394–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Youn CS, Park KN, Kim JY, Callaway CW, Choi SP, Rittenberger JC, et al. Repeated diffusion weighted imaging in comatose cardiac arrest patients with therapeutic hypothermia. Resuscitation. 2015;96:1–8.

    Article  PubMed  Google Scholar 

  19. Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2015;24:82–9.

    Article  Google Scholar 

  20. Kida K, Minamishima S, Wang H, Ren J, Yigitkanli K, Nozari A, et al. Sodium sulfide prevents water diffusion abnormality in the brain and improves long term outcome after cardiac arrest in mice. Resuscitation. 2012;83:1292–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Greer DM, Scripko PD, Wu O, Edlow BL, Bartscher J, Sims JR, et al. Hippocampal magnetic resonance imaging abnormalities in cardiac arrest are associated with poor outcome. J Stroke Cerebrovasc Dis. 2013;22:899–905.

    Article  PubMed  Google Scholar 

  22. Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23:746–54.

    Article  PubMed  CAS  Google Scholar 

  23. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischemic: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem. 2012;120:574–85.

    Article  PubMed  CAS  Google Scholar 

  25. Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T. Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res. 1992;88:91–105.

    Article  PubMed  CAS  Google Scholar 

  26. Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, et al. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel). 2013;6:1287–303.

    Article  CAS  Google Scholar 

  27. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 81701294, 81471339) and the Distinguished Youth Scholar Incubation Program of Nanfang Hospital (2016J005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Wang, Z., Gu, Y. et al. Glibenclamide Prevents Water Diffusion Abnormality in the Brain After Cardiac Arrest in Rats. Neurocrit Care 29, 128–135 (2018). https://doi.org/10.1007/s12028-018-0505-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0505-0

Keywords

Navigation