Skip to main content

Advertisement

Log in

Early Thalamocortical Reperfusion Leads to Neurologic Recovery in a Rodent Cardiac Arrest Model

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebral blood flow (CBF) plays an important role in neurological recovery after cardiac arrest (CA) resuscitation. However, the variations of CBF recovery in distinct brain regions and its correlation with neurologic recovery after return of spontaneous circulation (ROSC) have not been characterized. This study aimed to investigate the characteristics of regional cerebral reperfusion following resuscitation in predicting neurological recovery.

Methods

Twelve adult male Wistar rats were studied, ten resuscitated from 7-min asphyxial CA and two uninjured rats, which were designated as healthy controls (HCs). Dynamic changes in CBF in the cerebral cortex, hippocampus, thalamus, brainstem, and cerebellum were assessed by pseudocontinuous arterial spin labeling magnetic resonance imaging, starting at 60 min after ROSC to 156 min (or time to spontaneous arousal). Neurologic outcomes were evaluated by the neurologic deficit scale at 24 h post-ROSC in a blinded manner. Correlations between regional CBF (rCBF) and neurological recovery were undertaken.

Results

All post-CA animals were found to be nonresponsive during the 60–156 min post ROSC, with reductions in rCBF by 24–42% compared with HC. Analyses of rCBF during the post-ROSC time window from 60 to 156 min showed the rCBF recovery of hippocampus and thalamus were positively associated with better neurological outcomes (rs = 0.82, p = 0.004 and rs = 0.73, p < 0.001, respectively). During 96 min before arousal, thalamic and cortical rCBF exhibited positive correlations with neurological recovery (rs = 0.80, p < 0.001 and rs = 0.65, p < 0.001, respectively); for predicting a favorable neurological outcome, the thalamic rCBF threshold was above 50.84 ml/100 g/min (34% of HC) (area under the curve of 0.96), whereas the cortical rCBF threshold was above 60.43 ml/100 g/min (38% of HC) (area under the curve of 0.88).

Conclusions

Early magnetic resonance imaging analyses showed early rCBF recovery in thalamus, hippocampus, and cortex post ROSC was positively correlated with neurological outcomes at 24 h. Our findings suggest new translational insights into the regional reperfusion and the time window that may be critical in neurological recovery and warrant further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56-528.

    Article  PubMed  Google Scholar 

  2. Mallikethi-Reddy S, Briasoulis A, Akintoye E, et al. Incidence and survival after in-hospital cardiopulmonary resuscitation in nonelderly adults: US experience, 2007 to 2012. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003194.

    Article  PubMed  Google Scholar 

  3. Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication: a scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79.

    Article  PubMed  Google Scholar 

  4. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kawai K, Nitecka L, Ruetzler CA, et al. Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J Cereb Blood Flow Metab. 1992;12(2):238–49.

    Article  CAS  PubMed  Google Scholar 

  6. Hendrickx HHL, Rao GR, Safar P, Gisvold SE. Asphyxia, cardiac arrest and resuscitation in rats. I. Short term recovery. Resuscitation. 1984;12(2):97–116.

    Article  CAS  PubMed  Google Scholar 

  7. Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R. Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab. 1995;15(6):1032–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Miao P, Modi HR, Garikapati S, Koehler RC, Thakor NV. Therapeutic hypothermia promotes cerebral blood flow recovery and brain homeostasis after resuscitation from cardiac arrest in a rat model. J Cereb Blood Flow Metab. 2019;39(10):1961–73.

    Article  CAS  PubMed  Google Scholar 

  9. Iordanova B, Li L, Clark RSB, Manole MD. Alterations in cerebral blood flow after resuscitation from cardiac arrest. Front Pediatr. 2017;5:174.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Drabek T, Foley LM, Janata A, et al. Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI. Resuscitation. 2014;85(7):964–71.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion. Circ Res. 2015;116(12):2041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei Z, Wang Q, Modi HR, et al. Acute-stage MRI cerebral oxygen consumption biomarkers predict 24-hour neurological outcome in a rat cardiac arrest model. NMR Biomed. 2020;33(11):e4377.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Geocadin RG, Muthuswamy J, Sherman DL, Thakor NV, Hanley DF. Early electrophysiological and histologic changes after global cerebral ischemia in rats. Mov Disord. 2000;15(S1):14–21.

    Article  PubMed  Google Scholar 

  14. Modi HR, Wang Q, Gd S, et al. Intranasal post-cardiac arrest treatment with orexin-A facilitates arousal from coma and ameliorates neuroinflammation. PLoS ONE. 2017;12(9):e0182707.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Geocadin RG, Ghodadra R, Kimura T, et al. A novel quantitative EEG injury measure of global cerebral ischemia. Clin Neurophysiol. 2000;111(10):1779–87.

    Article  CAS  PubMed  Google Scholar 

  16. Muthuswamy J, Kimura T, Ding MC, Geocadin R, Hanley DF, Thakor NV. Vulnerability of the thalamic somatosensory pathway after prolonged global hypoxic–ischemic injury. Neuroscience. 2002;115(3):917–29.

    Article  CAS  PubMed  Google Scholar 

  17. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    Article  PubMed  Google Scholar 

  18. Hirschler L, Debacker CS, Voiron J, Köhler S, Warnking JM, Barbier EL. Interpulse phase corrections for unbalanced pseudo-continuous arterial spin labeling at high magnetic field. Magn Reson Med. 2018;79(3):1314–24.

    Article  CAS  PubMed  Google Scholar 

  19. Hirschler L, Munting LP, Khmelinskii A, et al. Transit time mapping in the mouse brain using time-encoded pCASL. NMR Biomed. 2018;31(2):e3855.

    Article  CAS  Google Scholar 

  20. Aslan S, Xu F, Wang PL, et al. Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med. 2010;63(3):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Geocadin RG, Sherman DL, Christian Hansen H, et al. Neurological recovery by EEG bursting after resuscitation from cardiac arrest in rats. Resuscitation. 2002;55(2):193–200.

    Article  PubMed  Google Scholar 

  22. Liu X. Classification accuracy and cut point selection. Stat Med. 2012;31(23):2676–86.

    Article  PubMed  Google Scholar 

  23. Becker LB, Aufderheide TP, Geocadin RG, et al. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;124(19):2158–77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manole MD, Kochanek PM, Bayır H, et al. Brain tissue oxygen monitoring identifies cortical hypoxia and thalamic hyperoxia after experimental cardiac arrest in rats. Pediatr Res. 2014;75(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  25. Busl KM, Greer DM. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation. 2010;26(1):5–13.

    Article  PubMed  Google Scholar 

  26. Li C-X, Patel S, Wang DJJ, Zhang X. Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn Reson Imaging. 2014;32(7):956–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geocadin RG, Koenig MA, Jia X, Stevens RD, Peberdy MA. Management of brain injury after resuscitation from cardiac arrest. Neurol Clin. 2008;26(2):487–506.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Björklund E, Lindberg E, Rundgren M, Cronberg T, Friberg H, Englund E. Ischaemic brain damage after cardiac arrest and induced hypothermia—a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85(4):527–32.

    Article  PubMed  Google Scholar 

  29. Brisson CD, Hsieh Y-T, Kim D, Jin AY, Andrew RD. Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state. PLOS ONE. 2014;9(5):e96585.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ito U, Spatz M, Walker JT, Klatzo I. Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol. 1975;32(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience. 1991;40(3):599–636.

    Article  CAS  PubMed  Google Scholar 

  32. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982;239(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  33. Sadowski M, Wisniewski HM, Jakubowska-Sadowska K, Tarnawski M, Lazarewicz JW, Mossakowski MJ. Pattern of neuronal loss in the rat hippocampus following experimental cardiac arrest-induced ischemia. J Neurol Sci. 1999;168(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  34. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37(5):1334–9.

    Article  PubMed  Google Scholar 

  35. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5(9):1315–6.

    Article  PubMed  Google Scholar 

  36. Foley LM, Clark RSB, Vazquez AL, et al. Enduring disturbances in regional cerebral blood flow and brain oxygenation at 24 hours after asphyxial cardiac arrest in developing rats. Pediatr Res. 2017;81(1–1):94–8.

    Article  PubMed  Google Scholar 

  37. Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 2008;1129:105–18.

    Article  PubMed  Google Scholar 

  38. Forgacs PB, Frey H-P, Velazquez A, et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol. 2017;4(2):119–29.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–85.

    Article  CAS  PubMed  Google Scholar 

  40. Edlow BL, Takahashi E, Wu O, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012;71(6):531–46.

    Article  PubMed  Google Scholar 

  41. Jang SH, Hyun YJ, Lee HD. Recovery of consciousness and an injured ascending reticular activating system in a patient who survived cardiac arrest. Medicine (Baltimore). 2016;95(26):e4041.

    Article  Google Scholar 

  42. Snider SB, Bodien YG, Frau-Pascual A, Bianciardi M, Foulkes AS, Edlow BL. Ascending arousal network connectivity during recovery from traumatic coma. Neuroimage Clin. 2020;28:102503.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Snider SB, Bodien YG, Bianciardi M, Brown EN, Wu O, Edlow BL. Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology. 2019;93(13):e1281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brunko E, de Beyl DZ. Prognostic value of early cortical somatosensory evoked potentials after resuscitation from cardiac arrest. Electroencephalogr Clin Neurophysiol. 1987;66(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  45. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61(3):461–70.

    Article  CAS  PubMed  Google Scholar 

  46. Pollock JM, Whitlow CT, Deibler AR, et al. Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol. 2008;29(7):1302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manchester LC, Lee V, Schmithorst V, Kochanek PM, Panigrahy A, Fink EL. Global and regional derangements of cerebral blood flow and diffusion magnetic resonance imaging after pediatric cardiac arrest. J Pediatr. 2016;169:28-35.e1.

    Article  PubMed  Google Scholar 

  48. Jia X, Koenig MA, Shin H-C, et al. Improving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring. Resuscitation. 2008;76(3):431–42.

    Article  PubMed  Google Scholar 

  49. Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health grants R01 HL071568-15, R01 HL139158-01A1, R01 AG064792, and R21 AG058413.

Author information

Authors and Affiliations

Authors

Contributions

RGG: supervised the project, provided research idea, reviewed the article, and served as the co-principal investigator. NVT: supervised the project, reviewed the article, and served as the co-principal investigator. YG: conducted data analyses and prepared the article. SMC: provided research idea and reviewed the article. ZW, QW, and HM: conducted animal experiments and data collection. PG: consulted and reviewed/edited the article. HL: supervised the magnetic resonance imaging study. All authors contributed to article revisions and approved the final manuscript.

Corresponding author

Correspondence to Romergryko G. Geocadin.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest.

Ethical approval/human and animal rights

This study was in compliance with ethical standards for animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Cho, SM., Wei, Z. et al. Early Thalamocortical Reperfusion Leads to Neurologic Recovery in a Rodent Cardiac Arrest Model. Neurocrit Care 37, 60–72 (2022). https://doi.org/10.1007/s12028-021-01432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01432-9

Keywords

Navigation