Skip to main content

Advertisement

Log in

Vitality markers in forensic investigations: a literature review

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Determining whether an injury was sustained in life or not is one of the most important topics in forensic medicine. Morphological, cytological, and biological techniques are used to assess wound vitality. Several markers involved in vital and supravital reactions increase the accuracy of wound age estimation. This systematic review aimed to investigate the main vitality markers used in forensic medicine to date. This review was conducted by performing a systematic literature search on online resources (PubMed Central database and Google Scholar) until May 2022. We identified 46 articles published between 1987 and May 2022, analyzing a total of 53 markers. Based on the data of this review, the most studied vitality markers were adhesion molecules (fibronectin, p-selectin, CD 15), pro-inflammatory cytokines (IL-6, IL-1β, TNF-α), cathepsin D, tryptase, and microRNAs (miRNAs). The most interesting studies were based on animal models: the different markers were investigated through immunohistochemical and qRT-PCR methods. The experimental methods were usually based on skin incisions, ligature marks, and burned skin areas. To date, it has not been possible to identify any gold standard markers based on the criteria of efficacy, specificity, and reliability; however, studies are still in progress. In the future, the use of miRNAs is promising as well as the combination of multiple markers. In this way, it will be possible to increase the sensitivity and specificity to validate systems or models for determining wound vitality in forensic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are included in the main text.

References

  1. Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res. Taylor & Francis. 2018;5:15–24.

  2. Pekka S, Knight B. Knight’s Forensic Pathology. IV. Taylor & Francis Group, editor. Broken Sound Parkway, NW, Suite 300: CRC Press. 2016.

  3. Madea B, Grellner W. Vitale Reaktionen. Rechtsmedizin. 2002;12:378–94.

    Article  Google Scholar 

  4. Madea B, Doberentz E, Jackowski C. Vital reactions - an updated overview. Forensic Sci Int. Ireland. 2019;305:110029.

  5. Guerrero-Urbina C, Fors M, Vásquez B, Fonseca G, Rodríguez-Guerrero M. Histological changes in lingual striated muscle tissue of human cadavers to estimate the postmortem interval. Forensic Sci Med Pathol [Internet]. 2022. Available from: https://doi.org/10.1007/s12024-022-00495-0.

  6. Madea B. Importance of supravitality in forensic medicine. Forensic Sci Int [Internet]. 1994;69:221–41. Available from: https://www.sciencedirect.com/science/article/pii/0379073894903867.

  7. Gauchotte G, Wissler M-P, Casse J-M, Pujo J, Minetti C, Gisquet H, et al. FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med. Germany. 2013;127:957–65.

  8. Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: an update of applications in forensic science. Diagnostics (Basel). 2020;11.

  9. Cecchi R. Estimating wound age: looking into the future. Int J Legal Med Germany. 2010;124:523–36.

    Article  Google Scholar 

  10. Grellner W, Madea B. Demands on scientific studies: vitality of wounds and wound age estimation. Forensic Sci Int Ireland. 2007;165:150–4.

    Article  Google Scholar 

  11. Turillazzi E, Vacchiano G, Luna-Maldonado A, Neri M, Pomara C, Rabozzi R, et al. Tryptase, CD15 and IL-15 as reliable markers for the determination of soft and hard ligature marks vitality. Histol Histopathol. 2010.

  12. Oehmichen M. Vitality and time course of wounds. Forensic Sci Int Ireland. 2004;144:221–31.

    Article  CAS  Google Scholar 

  13. Pomara C, Pascale N, Maglietta F, Neri M, Riezzo I, Turillazzi E. Use of contrast media in diagnostic imaging: medico-legal considerations. Radiol Med. 2015;120:802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prinsloo I, Gordon I. Post-mortem dissection artifacts of the neck; their differentiation from ante-mortem bruises. S Afr Med J South Africa. 1951;25:358–61.

    CAS  Google Scholar 

  15. Pollanen MS, Perera SDC, Clutterbuck DJ. Hemorrhagic lividity of the neck: controlled induction of postmortem hypostatic hemorrhages. Am J Forensic Med Pathol. United States. 2009;30:322–6.

  16. Salerno M, Cocimano G, Roccuzzo S, Russo I, Piombino-Mascali D, Márquez-Grant N, et al. New trends in immunohistochemical methods to estimate the time since death: a review. Diagnostics [Internet]. 2022;12. Available from: https://www.mdpi.com/2075-4418/12/9/2114.

  17. Neri M, Frati A, Turillazzi E, Cantatore S, Cipolloni L, di Paolo M, et al. Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury. Int J Mol Sci. 2018;19.

  18. Kondo T. Timing of skin wounds. Leg Med (Tokyo). Ireland. 2007;9:109–14.

  19. Maurer LM, Ma W, Mosher DF. Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol. 2015;51:213–27.

    Article  PubMed  Google Scholar 

  20. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985;101:880–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood United States. 1989;73:1109–12.

    CAS  Google Scholar 

  22. André P. P-selectin in haemostasis. Br J Haematol [Internet]. John Wiley & Sons, Ltd. 2004;126:298–306. Available from: https://doi.org/10.1111/j.1365-2141.2004.05032.x.

  23. Casse J-MM, Martrille L, Vignaud J-MM, Gauchotte G. Skin wounds vitality markers in forensic pathology: an updated review. Med Sci Law. England. 2016;56:128–37.

  24. Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med Germany. 2000;113:140–5.

    Article  CAS  Google Scholar 

  25. Silk AW, Margolin K. Cytokine therapy. Hematol Oncol Clin North Am. United States. 2019;33:261–74.

  26. Dubey V, Luqman S. Cathepsin D as a promising target for the discovery of novel anticancer agents. Curr Cancer Drug Targets Netherlands. 2017;17:404–22.

    Article  CAS  Google Scholar 

  27. Alanazi S, Grujic M, Lampinen M, Rollman O, Sommerhoff CP, Pejler G, et al. Mast cell β-tryptase is enzymatically stabilized by DNA. Int J Mol Sci [Internet]. MDPI; 2020;21:5065. Available from: https://pubmed.ncbi.nlm.nih.gov/32709152.

  28. Bonelli A, Bacci S, Norelli GA. Affinity cytochemistry analysis of mast cells in skin lesions: a possible tool to assess the timing of lesions after death. Int J Legal Med Germany. 2003;117:331–4.

    Article  CAS  Google Scholar 

  29. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol United States. 2019;234:5451–65.

    Article  CAS  Google Scholar 

  30. Lorente JA, Hernandez-Cueto C, Villanueva E. Cathepsin D: a new marker of the vitality of the wound. Z Rechtsmed. 1987;98:95–101.

    Article  CAS  PubMed  Google Scholar 

  31. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, et al. Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med Germany. 1992;105:21–6.

    Article  CAS  Google Scholar 

  32. Hernández-Cueto C, Lorente JA, Pedal I, Villanueva E, Zimmer G, Girela E, et al. Cathepsin D as a vitality marker in human skin wounds. Int J Legal Med Germany. 1993;106:145–7.

    Article  Google Scholar 

  33. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmengen W. The immunohistochemical localization of alpha1-antichymotrypsin and fibronectin and its meaning for the determination of the vitality of human skin wounds. Int J Legal Med. 1993.

  34. Hernández-Cueto C, Vieira DN, Girela E, Marques E, Calvo MD, Villalobos M, et al. Prostaglandin F2a (PGF2a): an inadequate marker of the vitality of wounds? Int J Legal Med Germany. 1994;106:312–4.

    Article  Google Scholar 

  35. Bacci S, Romagnoli P, Norelli GA, Forestieri AL, Bonelli A. Early increase in TNF-alpha-containing mast cells in skin lesions. Int J Legal Med Germany. 2006;120:138–42.

    Article  CAS  Google Scholar 

  36. Hernández-Cueto C, Vieira DN, Girela E, Marques E, Villanueva E, Sá FO. Diagnostic ability of D-dimer in the establishment of the vitality of wounds. Forensic Sci Int Ireland. 1995;76:141–9.

    Article  Google Scholar 

  37. Kondo T, Ohshima T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med Germany. 1996;108:231–6.

    Article  CAS  Google Scholar 

  38. Dressler J, Bachmann L, Kasper M, Hauck JG, Müller E. Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds. Int J Legal Med Germany. 1997;110:299–304.

    Article  CAS  Google Scholar 

  39. Grellner W, Dimmeler S, Madea B. Immunohistochemical detection of fibronectin in postmortem incised wounds of porcine skin. Forensic Sci Int Ireland. 1998;97:109–16.

    Article  CAS  Google Scholar 

  40. Ohshima T, Sato Y. Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med Germany. 1998;111:251–5.

    Article  CAS  Google Scholar 

  41. Dressler J, Bachmann L, Koch R, Müller E. Enhanced expression of selectins in human skin wounds. Int J Legal Med. 1998.

  42. Dressler J, Bachmann L, Strejc P, Koch R, Müller E. Expression of adhesion molecules in skin wounds: diagnostic value in legal medicine. Forensic Sci Int. 2000.

  43. Grellner W. Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int. 2002.

  44. Ortiz-Rey JA, Suárez-Peñaranda JM, Da Silva EA, Muñoz JI, San Miguel-Fraile P, la Fuente-Buceta A, et al. Immunohistochemical detection of fibronectin and tenascin in incised human skin injuries. Forensic Sci Int. 2002;126:118–22.

    Article  CAS  PubMed  Google Scholar 

  45. Fieguth A, Franz D, Lessig R, Kleemann WJ. Fatal trauma to the neck: immunohistochemical study of local injuries. Forensic Sci Int Ireland. 2003;135:218–25.

    Article  Google Scholar 

  46. Ortiz-Rey JA, Suárez-Peñaranda JM, Muñoz-Barús JI, Alvarez C, San Miguel P, Rodríguez-Calvo MS, et al. Expression of fibronectin and tenascin as a demonstration of vital reaction in rat skin and muscle. Int J Legal Med Germany. 2003;117:356–60.

    Article  CAS  Google Scholar 

  47. Balažic J, Grajn A, Kralj E, Šerko A, Štefanič B. Expression of fibronectin suicidal in gunshot wounds. Forensic Sci Int. 2005;147:S5-7.

    Article  PubMed  Google Scholar 

  48. Grellner W, Vieler S, Madea B. Transforming growth factors (TGF-α and TGF-β1) in the determination of vitality and wound age: immunohistochemical study on human skin wounds. Forensic Sci Int. 2005.

  49. Ortiz-Rey JA, Suárez-Peñaranda JM, San Miguel P, Muñoz JI, Rodríguez-Calvo MS, Concheiro L. Immunohistochemical analysis of P-selectin as a possible marker of vitality in human cutaneous wounds. J Forensic Leg Med England. 2008;15:368–72.

    Article  CAS  Google Scholar 

  50. Neri M, D’Errico S, Fiore C, Pomara C, Rabozzi R, Riezzo I, et al. Stillborn or liveborn? Comparing umbilical cord immunohistochemical expression of vitality markers (tryptase, alpha(1)-antichymotrypsin and CD68) by quantitative analysis and confocal laser scanning microscopy. Pathol Res Pract Germany. 2009;205:534–41.

    Article  Google Scholar 

  51. Oehmichen M, Gronki T, Meissner C, Anlauf M, Schwark T. Mast cell reactivity at the margin of human skin wounds: an early cell marker of wound survival? Forensic Sci Int Ireland. 2009;191:1–5.

    Article  CAS  Google Scholar 

  52. Sun J, Wang Y, Zhang L, Gao C, Zhang L, Guo Z. Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Int J Legal Med Germany. 2010;124:27–33.

    Article  Google Scholar 

  53. Montisci M, Corradin M, Giacomelli L, Viel G, Cecchetto G, Ferrara SD. Can immunohistochemistry quantification of cathepsin-D be useful in the differential diagnosis between vital and post-mortem wounds in humans? Med Sci Law England. 2014;54:151–7.

    Article  Google Scholar 

  54. Capatina CO, Chirica VI, Martius E, Isaila OM, Ceauşu M. Are P-selectin and fibronectin truly useful for the vital reaction? Case presentation. Rom J Legal Med. 2015;23:91–4.

    Article  Google Scholar 

  55. van de Goot FRW, Korkmaz HI, Fronczek J, Witte BI, Visser R, Ulrich MMW, et al. A new method to determine wound age in early vital skin injuries: a probability scoring system using expression levels of Fibronectin, CD62p and Factor VIII in wound hemorrhage. Forensic Sci Int. 2014;244:128–35.

    Article  PubMed  Google Scholar 

  56. Kubo H, Hayashi T, Ago K, Ago M, Kanekura T, Ogata M. Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin. Leg Med (Tokyo). Ireland. 2014;16:128–34.

  57. Kimura A, Ishida Y, Nosaka M, Shiraki M, Hama M, Kawaguchi T, et al. Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med Germany. 2015;129:537–41.

    Article  Google Scholar 

  58. Balandiz H, Pehlivan S, Çiçek AF, Tuğcu H. Evaluation of vitality in the experimental hanging model of rats by using immunohistochemical IL-1β antibody staining. Am J Forensic Med Pathol. 2015;36:317–22.

    Article  PubMed  Google Scholar 

  59. Yu T-S, Li Z, Zhao R, Zhang Y, Zhang Z-H, Guan D-W. Time-dependent Expression of MMP-2 and TIMP-2 after rats skeletal muscle contusion and their application to determine wound age. J Forensic Sci United States. 2016;61:527–33.

    Article  CAS  Google Scholar 

  60. Abo El-Noor MM, Elgazzar FM, Alshenawy HA. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality. J Forensic Leg Med England. 2017;52:148–53.

    Article  Google Scholar 

  61. Xu J, Zhao R, Xue Y, Xiao H, Sheng Y, Zhao D, et al. RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study. Forensic Sci Res Taylor & Francis. 2017;3:153–60.

    Article  Google Scholar 

  62. Ye M-Y, Xu D, Liu J-C, Lyu H-P, Xue Y, He J-T, et al. IL-6 and IL-20 as potential markers for vitality of skin contusion. J Forensic Leg Med. 2018;59:8–12.

    Article  PubMed  Google Scholar 

  63. Ishida Y, Kuninaka Y, Nosaka M, Shimada E, Hata S, Yamamoto H, et al. Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int J Legal Med Germany. 2018;132:1375–80.

    Article  Google Scholar 

  64. He J-T, Huang H-Y, Qu D, Xue Y, Zhang K-K, Xie X-L, et al. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions. Forensic Sci Med Pathol United States. 2018;14:174–9.

    Article  CAS  Google Scholar 

  65. Metwally ES, Madboly A, Farag A, Abdelaziz TA, Farag HA. Reliability of fibronectin and P-selectin as indicators of vitality and age of wounds: an immunohistochemical study on human skin wounds. Mansoura Journal of Forensic Medicine and Clinical Toxicology. Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Benha University, Egypt. 2018;26:83–99.

  66. Legaz I, Pérez-Cárceles MD, Gimenez M, Martínez-Díaz F, Osuna E, Luna A. Immunohistochemistry as a tool to characterize human skin wounds of hanging marks. Rom J Legal Med. 2018;26:354–8.

    Google Scholar 

  67. Khalaf AA, Hassanen EI, Zaki AR, Tohamy AF, Ibrahim MA. Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in rats. Int Wound J. 2019/08/25. Blackwell Publishing Ltd. 2019;16:1416–25.

  68. Qu D, Tan X-H, Zhang K-K, Wang Q, Wang H-J. ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Sci Int. Ireland. 2019;303:109937.

  69. De Matteis A, dell’Aquila M, Maiese A, Frati P, La Russa R, Bolino G, et al. The Troponin-I fast skeletal muscle is reliable marker for the determination of vitality in the suicide hanging. Forensic Sci Int Ireland. 2019;301:284–8.

    Article  Google Scholar 

  70. Neri M, Fabbri M, D’Errico S, Di Paolo M, Frati P, Gaudio RM, et al. Regulation of miRNAs as new tool for cutaneous vitality lesions demonstration in ligature marks in deaths by hanging. Sci Rep. 2019;9:20011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang K, Cheng M, Xu J, Chen L, Li J, Li Q, et al. MiR-711 and miR-183–3p as potential markers for vital reaction of burned skin. Forensic Sci Res. Taylor & Francis. 2020;1–7.

  72. Lyu HP, Cheng M, Liu JC, Ye MY, Xu D, He JT, et al. Differentially expressed microRNAs as potential markers for vital reaction of burned skin. J Forensic Sci Med. 2018;4:135–41.

    Google Scholar 

  73. Xu J, Zhao R, Xue Y, Xiao H, Sheng Y, Zhao D, et al. RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study. Forensic Sci Res. 2018;3.

  74. Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med. 2000;113.

  75. Neri M, D’Errico S, Fiore C, Pomara C, Rabozzi R, Riezzo I, et al. Stillborn or liveborn? Comparing umbilical cord immunohistochemical expression of vitality markers (tryptase, α1-antichymotrypsin and CD68) by quantitative analysis and confocal laser scanning microscopy. Pathol Res Pract Urban Fischer. 2009;205:534–41.

    Article  Google Scholar 

  76. Kondo T, Ohshima T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med. 1996;108.

  77. Balandiz H, Pehlivan S, Çiçek AF, Tuʇcu H. Evaluation of vitality in the experimental hanging model of rats by using immunohistochemical IL-1β antibody staining. Am J Forensic Med Pathol. 2015;36.

  78. Gauchotte G, Wissler MP, Casse JM, Pujo J, Minetti C, Gisquet H, et al. FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med Springer. 2013;127:957–65.

    Article  Google Scholar 

  79. Tomassini L, Paolini D, Manta AM, Bottoni E, Ciallella C. “Rust stain”: a rare mark in firearm suicide—a case report and review of the literature. Int J Legal Med [Internet]. 2021;135:1823–8. Available from: https://doi.org/10.1007/s00414-021-02607-x.

  80. Strejc P, Pilin A, Klír P, Vajtr D. The origin, distribution and relocability of supravital hemorrhages. Soud Lek Czech Republic. 2011;56:18–20.

    CAS  Google Scholar 

  81. Dettmeyer RB. Forensic histopathology. Forensic histopathology: Springer International Publishing; 2018.

    Book  Google Scholar 

  82. Goot FRW van de. The chronological dating of injury BT - essentials of autopsy practice: topical developments, trends and advances. In: Rutty GN, editor. London: Springer London. 2008;167–81.

  83. Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med United States. 1998;338:436–45.

    Article  CAS  Google Scholar 

  84. Casse J-M, Martrille L, Vignaud J-M, Gauchotte G. Skin wounds vitality markers in forensic pathology: an updated review. Med Sci Law England. 2016;56:128–37.

    Article  Google Scholar 

  85. Bonelli A, Bacci S, Vannelli GB, Norelli GA. Immunohistochemical localization of mast cells as a tool for the discrimination of vital and postmortem lesions. Int J Legal Med. 2003.

  86. Baldari B, Vittorio S, Sessa F, Cipolloni L, Bertozzi G, Neri M, et al. Forensic application of monoclonal anti-human glycophorin A antibody in samples from decomposed bodies to establish vitality of the injuries. A Preliminary Experimental Study. Healthcare (Basel). 2021;9.

  87. Cerretani D, Riezzo I, Fiaschi AI, Centini F, Giorgi G, D’Errico S, et al. Cardiac oxidative stress determination and myocardial morphology after a single ecstasy (MDMA) administration in a rat model. Int J Legal Med. 2008.

  88. Turillazzi E, Baroldi G, Silver MD, Parolini M, Pomara C, Fineschi V. A systematic study of a myocardial lesion: colliquative myocytolysis. Int J Cardiol. 2005;104:152–7.

    Article  CAS  PubMed  Google Scholar 

  89. Kupper TS. Immune and inflammatory processes in cutaneous tissues. Mechanisms and speculations J Clin Invest. 1990;86:1783–9.

    Article  CAS  PubMed  Google Scholar 

  90. Mizutani H, Black R, Kupper TS. Human keratinocytes produce but do not process pro-interleukin-1 (IL-1) beta. Different strategies of IL-1 production and processing in monocytes and keratinocytes. J Clin Invest. 1991;87:1066–71.

  91. Bai R, Wan L, Shi M. The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int Ireland. 2008;175:193–7.

    Article  CAS  Google Scholar 

  92. Yu S-L, Chen H-Y, Chang G-C, Chen C-Y, Chen H-W, Singh S, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell. 2008;13:48–57.

    Article  CAS  PubMed  Google Scholar 

  93. Ibrahim SF, Ali MM, Basyouni H, Rashed LA, Amer EAE, Abd E-K. Histological and miRNAs postmortem changes in incisional wound. Egypt J Forensic Sci. 2019;9:37.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Scientific Bureau of the University of Catania for language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sessa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennisi, G., Torrisi, M., Cocimano, G. et al. Vitality markers in forensic investigations: a literature review. Forensic Sci Med Pathol 19, 103–116 (2023). https://doi.org/10.1007/s12024-022-00551-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-022-00551-9

Keywords

Navigation