Skip to main content

Advertisement

Log in

Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions—either directly or indirectly—leading to ED and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ADMA:

Asymmetric dimethylarginine

AMPK:

Adenosine monophosphate-dependent kinase

AGEs:

Advanced glycation end products

AG II:

Angiotensin II

AR:

Aldose reductase

ARI:

Aldose reductase inhibitors

BH4 :

Tetrahydrobiopterin

BAD:

Bcl-2-associated death promoter

CRP:

C-reactive protein

CXCR-4:

Chemokine receptor type-4

CVD:

Cardiovascular disease

cGMP:

Cyclic guanosine monophosphate

COX:

Cyclooxygenase

CMKLR1:

Chemokine-like receptor 1

DPP-4:

Dipeptidyl-peptidase-4

DAG:

Diacyl glycerol

ET-1:

Endothelin-1

ED:

Endothelial dysfunction

DDAH:

Dimethylarginine dimethylaminohydrolase

ECs:

Endothelial cells

EPCs:

Endothelial progenitor cells

ERK:

Extracellar signal-regulated kinases

EDHF:

Endothelium-derived hyperpolarizing factor

eNOS:

Endothelial NO synthase

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

FOXO3a:

Forkhead transcription factor3a

GTP:

Guanosine triphosphate

GC:

Guanylate cyclase

GSH:

Glutathione

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GA-3P:

Glyceraldehyde-3-phosphate

G-6-Pase:

Glucose-6-phosphatase

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

HDL:

High density lipoprotein

HIF-1α:

Hypoxia-inducible factor-1α

HFD:

High fat diet

HUVECs:

Human umbilical vein endothelial cells

HO-1:

Heme oxygenase-1

HSP:

Hexosamine synthetic pathway

HSL:

Hormone sensitive lipase

IR:

Insulin resistance

IKK:

Inhibitor of κB kinase

IRS:

Insulin receptor substrate

IGF-I:

Insulin growth factor

ICAM-1:

Intercellular adhesion molecule-1

JNK:

c-Jun N-terminal kinases

JAM-A:

Junction adhesion molecule A

LDL:

Low density lipoprotein

L-NAME:

Nitro-l-arginine methyl ester

LOX-1:

Lecithin-like ox-LDL receptor-1

LC:

Lactosyl ceramide

MMP-9:

Matrix metallopeptidase-9

MAPK:

Mitogen activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

MnSOD:

Mn superoxide dismutase

MPO:

Myeloperoxidase

MDA:

Malondialdehyde

NF-κB:

Nuclear factor κB

NO:

Nitric oxide

NEFA:

Non-esterified fatty acids

Nox:

NADPH oxidase

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NIK:

NF-kB inducing kinase

Nampt:

Nicotinamide phosphoribosyltransferase

PTEN:

Phosphatase and tensin homolog

PK:

Protein kinase

PI3K/Akt:

Phosphatidylinositol triphosphate kinase/Akt (protein kinase B)

PKC:

Protein kinase C

PTPs:

Protein tyrosine phosphatases

PON-1:

Paraoxonase-1

PGI2 :

Prostacyclin

PSGL:

P-selectin glycoprotein ligand

PPARγ:

Peroxisome proliferator activated receptor

PARP:

Poly (ADP-ribose) polymerase

PDGF:

Platelet-derived growth factor

PLC:

Phospholipase C

PAI:

Plasminogen activator inhibitor

PGC:

Peroxisome proliferator activated receptor γ coactivator

PEPCK:

Phosphoenolpyruvate carboxykinase

ROS:

Reactive oxygen species

RAGE:

Receptors for advanced glycated end products

STAT:

Signal transducer and activator of transcription

SDF-1:

Stromal cell-derived factor-1

S1P:

Sphingosine-1-phosphate

SK:

Sphingosine kinase

SOD:

Superoxide dismutase

SDH:

Sorbitol dehydrogenase

SOCS-3:

Supressor of cytokine signaling 3

SHP:

Src-homology-2 domain-containing phosphatase

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TNF-α:

Tumor necrosis factor-α

TNFR:

Tumor necrosis factor receptor

TRAF:

TNFR-associated factor

TRADD:

TNF receptor-associated death domain

TGF:

Transforming growth factor

TXA2 :

Thromboxane A2

tPA:

Tissue plasminogen activator

UDP-GlcNAc:

UDP-N-acetylglucosamine

UCP:

Uncoupling protein

VLDL:

Very low density lipoprotein

VSMCs:

Vascular smooth muscle cells

VEGF:

Vascular endothelial growth factor

VCAM:

Vascular cell adhesion molecule

XRCC1:

X-ray repair cross-complementing protein-1

ZO:

Zucker obese rats

ZL:

Zucker lean rats

References

  1. Association AD, Diagnosis and classification of diabetes mellitus. Diabetes care 36(Supplement 1), S67–S74 (2013)

    Article  Google Scholar 

  2. P.Z. Zimmet, D.J. Magliano, W.H. Herman, J.E. Shaw, Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2(1), 56–64 (2014)

    Article  PubMed  Google Scholar 

  3. R.A. Defronzo, Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58(4), 773–795 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. E. Hopps, D. Noto, G. Caimi, M. Averna, A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20(1), 72–77 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. J.S. Johansen, A.K. Harris, D.J. Rychly, A. Ergul, Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4(1), 5 (2005)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. G. Cohen, Y. Riahi, E. Alpert, A. Gruzman, S. Sasson, The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch. Physiol. Biochem. 113(4–5), 259–267 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. S. Ansar, J. Koska, P.D. Reaven et al., Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc. Diabetol. 10(1), 61 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. D. Versari, E. Daghini, A. Virdis, L. Ghiadoni, S. Taddei, Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes care 32(Suppl 2), S314–S321 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. R.J. Esper, R.A. Nordaby, J.O. Vilariño, A. Paragano, J.L. Cacharrón, R.A. Machado et al., Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 5(4), 4–22 (2006)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. C.N. Marti, M. Gheorghiade, A.P. Kalogeropoulos, V.V. Georgiopoulou, A.A. Quyyumi, J. Butler, Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 60(16), 1455–1469 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. S. Hamed, B. Brenner, A. Aharon, D. Daoud, A. Roguin, Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus. Cardiovasc Diabetol. 8(56), 666–674 (2009)

    Google Scholar 

  13. F. Timmermans, J. Plum, M.C. Yöder, D.A. Ingram, B. Vandekerckhove, J. Case, Endothelial progenitor cells: identity defined? J. Cell Mol. Med. 13(1), 87–102 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  14. D.P. Basile, M.C. Yoder, Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 229(1), 10–16 (2014)

    CAS  PubMed  Google Scholar 

  15. R.M. Cubbon, A. Rajwani, S.B. Wheatcroft, The impact of insulin resistance on endothelial function, progenitor cells and repair. Diabetes Vasc. Dis. Res. 4(2), 103–111 (2007)

    Article  Google Scholar 

  16. M.C. Yoder, Human endothelial progenitor cells. Cold Spring Harbor perspectives in medicine. Cold Spring: Harbor Laboratory Press; 2012;2(7):a006692 (2012). doi:10.1101/cshperspect.a006692

  17. M. Zhang, A.B. Malik, J. Rehman, Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol. 21(3), 224–228 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  18. P. Staller, J. Sulitkova, J. Lisztwan, H. Moch, E.J. Oakeley, W. Krek, Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955), 307–311 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. D.J. Ceradini, A.R. Kulkarni, M.J. Callaghan, O.M. Tepper, N. Bastidas, M.E. Kleinman et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10(8), 858–864 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. A. Avogaro, G.P. Fadini, A. Gallo, E. Pagnin, S. de Kreutzenberg, Endothelial dysfunction in type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 16, S39–S45 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. M. Gili, A. Orsello, S. Gallo, M.F. Brizzi, Diabetes-associated macrovascular complications: cell-based therapy a new tool? Endocrine 44(3), 557–575 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. T. Thum, D. Fraccarollo, M. Schultheiss, S. Froese, P. Galuppo, J.D. Widder et al., Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 56(3), 666–674 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. L. Bruyndonckx, V.Y. Hoymans, G. Frederix, A. Guchtenaere, H. Franckx, D.K. Vissers et al., Endothelial progenitor cells and endothelial microparticles are independent predictors of endothelial function. J. Pediatr. 165(2), 300–305 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. M.F. Lombardo, P. Iacopino, M. Cuzzola, E. Spiniello, C. Garreffa, F. Ferrelli et al., Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytom. Part A 81(10), 856–864 (2012)

    Article  CAS  Google Scholar 

  25. M. Frisard, E. Ravussin, Energy metabolism and oxidative stress. Endocrine 29(1), 27–32 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. J. Tanaka, L. Qiang, A.S. Banks, C.L. Welch, M. Matsumoto, T. Kitamura et al., Foxo 1 links hyperglycemia to LDL oxidation and endothelial nitric oxide synthase dysfunction in vascular endothelial cells. Diabetes 58(10), 2344–2354 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. K. Tsuchiya, J. Tanaka, Y. Shuiqing, C.L. Welch, R.A. DePinho, I. Tabas et al., FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab. 15(3), 372–381 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. F. Yan, Y. Wang, X. Wu, H.M. Peshavariya, G.J. Dusting, M. Zhang et al., Nox4 and redox signaling mediate TGF-β-induced endothelial cell apoptosis and phenotypic switch. Cell Death Dis. 5, e1010 (2014). doi:10.1038/cddis.2013.551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. V. Romaschenko, R. Zinovkin, I. Galkin, V. Zakharova, A. Panteleeva, A. Tokarchuk et al., Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor. Biochemistry (Moscow) 80(5), 610–619 (2015)

    Article  CAS  Google Scholar 

  30. M.T. Mathews, B.C. Berk, PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol. 28(4), 711–717 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. L. Gong, F. Liu, J. Wang, X. Wang, X. Hou, Y. Sun et al., yperglycemia induces apoptosis of pancreatic islet endothelial cells via reactive nitrogen species-mediated Jun N-terminal kinase activation. Mol. Cell Res. 1813(6), 1211–1219 (2011)

    CAS  Google Scholar 

  32. A. Vikram, Y.-R. Kim, S. Kumar, A. Naqvi, T.A. Hoffman, A. Kumar et al., Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler. Thrombos. Vasc. Biol. 34(10), 2301–2309 (2014)

    Article  CAS  Google Scholar 

  33. J. Case, D.A. Ingram, L.S. Haneline, Oxidative stress impairs endothelial progenitor cell function. Antioxid. Redox Signal. 10(11), 1895–1907 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. D. Sukmawati, S. Fujimura, S. Jitsukawa, R. Ito-Hirano, T. Ishii, T. Sato et al., Oxidative stress tolerance of early stage diabetic endothelial progenitor cell. Regener. Therapy 1, 38–44 (2015)

    Article  Google Scholar 

  35. F. Wang, Y.-Q. Wang, Q. Cao, J.-J. Zhang, L.-Y. Huang, T.-T. Sang et al., Hydrogen peroxide induced impairment of endothelial progenitor cell viability is mediated through a FoxO3a dependant mechanism. Microvasc. Res. 90, 48–54 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. A. Rosso, A. Balsamo, R. Gambino, P. Dentelli, R. Falcioni, M. Cassader et al., p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J. Biol. Chem. 281(7), 4339–4347 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. J. Song, Y. Lee, Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochem. J. 373, 845–853 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. D.A. Ingram, T.R. Krier, L.E. Mead, C. McGuire, D.N. Prater, J. Bhavsar et al., Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 25(2), 297–304 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. J. Wei, Y. Liu, M. Chang, C.-L. Sun, D.-W. Li, Z.-Q. Liu et al., Proteomic analysis of oxidative modification in endothelial colony-forming cells treated by hydrogen peroxide. Int. J. Mol. Med. 29(6), 1099–1105 (2012)

    CAS  PubMed  Google Scholar 

  40. N. Musi, L.J. Goodyear, Insulin resistance and improvements in signal transduction. Endocrine 29(1), 73–80 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. H.C. Lam, Role of endothelin in diabetic vascular complications. Endocrine 14(3), 277–284 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. K. Cusi, K. Maezono, A. Osman, M. Pendergrass, M.E. Patti, T. Pratipanawatr et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J. Clin. Investig. 105(3), 311 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. E.C. Eringa, C.D.A. Stehouwer, G.P. van Nieuw Amerongen, L. Ouwehand, N. Westerhof, P. Sipkema, Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am. J. Physiol. Heart Circ. Physiol. 287(5), H2043–H2048 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. W.A. Hsueh, R.E. Law, Insulin signaling in the arterial wall. Am. J. Cardiol. 84(1A), 21J–24J (1999)

    Article  CAS  PubMed  Google Scholar 

  45. P.V. Katakam, J.A. Snipes, M.M. Steed, D.W. Busija, Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats. J. Cereb. Blood Flow Metab. 32(5), 792–804 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. U. Förstermann, T. Münzel, Endothelial nitric oxide synthase in vascular disease from marvel to menace. Circulation 113(13), 1708–1714 (2006)

    Article  PubMed  CAS  Google Scholar 

  47. M. Yokoyama, K. Hirata, Endothelial nitric oxide synthase uncoupling: is it a physiological mechanism of endothelium-dependent relaxation in cerebral artery? Cardiovasc. Res. 73(1), 8–9 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. J. Vásquez-Vivar, B. Kalyanaraman, P. Martásek, N. Hogg, B.S. Masters, H. Karoui et al., Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95(16), 9220–9225 (1998)

    Article  PubMed Central  PubMed  Google Scholar 

  49. T. Sugiyama, B.D. Levy, T. Michel, Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells. J. Biol. Chem. 284(19), 12691–12700 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. J.G. San, J. Bidegain, P.A. Robador, J. Díez, A. Fortuño, G. Zalba, Insulin-induced NADPH oxidase activation promotes proliferation and matrix metalloproteinase activation in monocytes/macrophages. Free Radic. Biol. Med. 46(8), 1058–1067 (2009)

    Article  CAS  Google Scholar 

  51. A. Görlach, R. Brandes, K. Nguyen, M. Amidi, F. Dehghani, R. Busse, A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ. Res. 87(1), 26–32 (2000)

    Article  PubMed  Google Scholar 

  52. G. Douglas, J.K. Bendall, M.J. Crabtree, A.L. Tatham, E.E. Carter, A.B. Hale et al., Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE-/- mice. Cardiovasc. Res. 94(1), 20–29 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. T. Ago, T. Kitazono, H. Ooboshi, T. Iyama, Y.H. Han, J. Takada et al., Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109(2), 227–233 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima et al., Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 114(12), 1752 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. G. Ceolotto, M. Bevilacqua, I. Papparella, E. Baritono, L. Franco, C. Corvaja et al., Insulin generates free radicals by an NAD (P) H, phosphatidylinositol 3′-kinase-dependent mechanism in human skin fibroblasts ex vivo. Diabetes 53(5), 1344–1351 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. D. Zhuang, A.-C. Ceacareanu, Y. Lin, B. Ceacareanu, M. Dixit, K.E. Chapman et al., Nitric oxide attenuates insulin-or IGF-I-stimulated aortic smooth muscle cell motility by decreasing H2O2 levels: essential role of cGMP. Am. J. Physiol.-Heart Circ. Physiol. 286(6), H2103–H2112 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. K. Shinozaki, T. Okamura, Y. Nishio, A. Kashiwagi, R. Kikkawa, N. Toda, Evaluation of endothelial free radical release by vascular tension responses in insulin-resistant rat aorta. Eur. J. Pharmacol. 394(2–3), 295–299 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. C. Murphy, G.S. Kanaganayagam, B. Jiang, P.J. Chowienczyk, R. Zbinden, M. Saha et al., Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler. Thromb. Vasc. Biol. 27(4), 936–942 (2007)

    Article  CAS  PubMed  Google Scholar 

  59. P.M. Humpert, Z. Djuric, U. Zeuge, D. Oikonomou, Y. Seregin, K. Laine et al., Insulin stimulates the clonogenic potential of angiogenic endothelial progenitor cells by IGF-1 receptor-dependent signaling. Mol. Med. 14(5–6), 301 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  60. N.Y. Yuldasheva, S.T. Rashid, N.J. Haywood, P. Cordell, R. Mughal, H. Viswambharan et al., Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype. Arterioscler. Thrombos. Vasc. Biol. 34(9), 2051–2058 (2014)

    Article  CAS  Google Scholar 

  61. L. Benboubker, H. Watier, A. Carion, M.-T. Georget, I. Desbois, P. Colombat et al., Association between the SDF1-3′ A allele and high levels of CD34+ progenitor cells mobilized into peripheral blood in humans. Br. J. Haematol. 113(1), 247–250 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. A. Sengupta, H. Viswambharan, N. Yuldasheva, B. Mercer, S. Galloway, N. Ali et al., Endothelial insulin sensitisation enhances vascular repair in systemic insulin resistance and improves endothelial function by restoring nitric oxide bioavailability. Circulation 130(2), A13829 (2014)

    Google Scholar 

  63. M.B. Kahn, N.Y. Yuldasheva, R.M. Cubbon, J. Smith, S.T. Rashid, H. Viswambharan et al., Insulin resistance impairs circulating angiogenic progenitor cell function and delays endothelial regeneration. Diabetes 60(4), 1295–1303 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. M.M. Hartge, T. Unger, U. Kintscher, The endothelium and vascular inflammation in diabetes. Diabetes Vasc. Dis. Res. 4(2), 84–88 (2007)

    Article  Google Scholar 

  65. R.B. Goldberg, Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 94(9), 3171–3182 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. T. Yang, C.-H. Chu, P.-C. Hsieh, C.-H. Hsu, Y.-C. Chou, S.-H. Yang et al., C-reactive protein concentration as a significant correlate for metabolic syndrome: a Chinese population-based study. Endocrine 43(2), 351–359 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. S. Ma, Y. Jin, W. Xu, W. Hu, F. Bai, X. Wu, Increased serum levels of ischemia-modified albumin and C-reactive protein in type 1 diabetes patients with ketoacidosis. Endocrine 42(3), 570–576 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker, C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3), 327–334 (2001)

    Article  CAS  PubMed  Google Scholar 

  69. D.J. Freeman, J. Norrie, M.J. Caslake, A. Gaw, I. Ford, G.D. Lowe et al., C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51(5), 1596–1600 (2002)

    Article  CAS  PubMed  Google Scholar 

  70. S. Devaraj, P.R. Kumaresan, I. Jialal, C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin. Chem. 57(12), 1757–1761 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Fujita, S. Yamaguchi, A. Kakino, S. Iwamoto, R. Yoshimoto, T. Sawamura, Lectin-like oxidized LDL receptor 1 is involved in CRP-mediated complement activation. Clin. Chem. 57(10), 1398–1405 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. K. Tanigaki, C. Mineo, I.S. Yuhanna, K.L. Chambliss, M.J. Quon, E. Bonvini et al., C-reactive protein inhibits insulin activation of endothelial nitric oxide synthase via the immunoreceptor tyrosine-based inhibition motif of Fc$\gamma$RIIB and SHIP-1. Circ. Res. 104(11), 1275–1282 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. X. Wang, W. Liu, Y. Wu, X. Liu, X. Liang, Z. Wan et al., C-reactive protein reduces protein S-nitrosylation in endothelial cells. Mol. Cell. Biochem. 375(1–2), 131–138 (2013)

    CAS  PubMed  Google Scholar 

  74. Y. Zhong, C. Cheng, Y. Luo, C. Tian, H. Yang, B. Liu et al., C-reactive protein stimulates RAGE expression in human coronary artery endothelial cells in vitro via ROS generation and ERK/NF κB activation. Acta Pharmacol. Sinica 36, 440–447 (2015)

    Article  CAS  Google Scholar 

  75. J. Chen, J. Jin, M. Song, H. Dong, G. Zhao, L. Huang, C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products. Gene 496(2), 128–135 (2012)

    Article  CAS  PubMed  Google Scholar 

  76. H. Fujii, S.-H. Li, P.E. Szmitko, P.W. Fedak, S. Verma, C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler. Thrombos. Vasc. Biol. 26(11), 2476–2482 (2006)

    Article  CAS  Google Scholar 

  77. K.A. Fasing, B.J. Nissan, J.J. Greiner, B.L. Stauffer, C.A. DeSouza, Influence of elevated levels of C-reactive protein on circulating endothelial progenitor cell function. Clin. Transl. Sci. 7(2), 137–140 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. K. Yamagata, N. Tanaka, H. Matsufuji, M. Chino, β-Carotene reverses the IL-1βmediated reduction in paraoxonase-1 expression via induction of the CaMKKII pathway in human endothelial cells. Microvasc. Res. 84(3), 297–305 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. S. Vallejo, E. Palacios, T. Romacho, L. Villalobos, C. Peiró, C.F. Sánchez-Ferrer, The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 13(1), 158 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. A. Rosell, K. Arai, J. Lok, T. He, S. Guo, M. Navarro et al., Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro. J. Cereb. Blood Flow Metab. 29(5), 933–943 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. L. Yang, X.-G. Guo, C.-Q. Du, J.-X. Yang, D.-M. Jiang, B. Li et al., Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway. Inflammation 35(4), 1242–1250 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. A. Mao, C. Liu, Y. Guo, D. Su, T. Luo, W. Fu et al., Modulation of the number and functions of endothelial progenitor cells by interleukin 1$\beta$ in the peripheral blood of pigs: involvement of p38 mitogen-activated protein kinase signaling in vitro. J. Trauma Acute Care Surg. 73(5), 1145–1151 (2012)

    Article  CAS  PubMed  Google Scholar 

  83. M. Lagman, J. Ly, T. Saing, S.M. Kaur, T.E. Vera, D. Morris et al., Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS ONE 10(3), e0118436 (2015). doi:10.1371/journal.pone.0118436

    Article  PubMed Central  PubMed  Google Scholar 

  84. B. Thorand, H. Kolb, J. Baumert, W. Koenig, L. Chambless, C. Meisinger et al., Elevated levels of interleukin-18 predict the development of type 2 diabetes results from the MONICA/KORA Augsburg study, 1984-2002. Diabetes 54(10), 2932–2938 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. M. Mishra, H. Kumar, S. Bajpai, R.K. Singh, K. Tripathi, Level of serum IL-12 and its correlation with endothelial dysfunction, insulin resistance, proinflammatory cytokines and lipid profile in newly diagnosed type 2 diabetes. Diabetes Res. Clin. Pract. 94(2), 255–261 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. M.-C. Durpès, C. Morin, J. Paquin-Veillet, R. Beland, M. Paré, M.-O. Guimond et al., PKC-$\beta$ activation inhibits IL-18-binding protein causing endothelial dysfunction and diabetic atherosclerosis. Cardiovasc. Res. 106(2), 303–313 (2015)

    Article  PubMed  Google Scholar 

  87. B. Chandrasekar, W.H. Boylston, K. Venkatachalam, N.J. Webster, S.D. Prabhu, A.J. Valente, Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-$\kappa$B/PTEN suppression. J. Biol. Chem. 283(36), 24889–24898 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. J.M. Kahlenberg, S.G. Thacker, C.C. Berthier, C.D. Cohen, M. Kretzler, M.J. Kaplan, Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J. Immunol. 187(11), 6143–6156 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. X. Zhang, L. Ma, F. Peng, Y. Wu, Y. Chen, L. Yu et al., The endothelial dysfunction in patients with type 2 diabetes mellitus is associated with IL-6 gene promoter polymorphism in Chinese population. Endocrine 40(1), 124–129 (2011)

    Article  PubMed  CAS  Google Scholar 

  90. D.Y. Yuen, R.M. Dwyer, V.B. Matthews, L. Zhang, B.G. Drew, B. Neill et al., Interleukin-6 attenuates insulin-mediated increases in endothelial cell signaling but augments skeletal muscle insulin action via differential effects on tumor necrosis factor-$\alpha$ expression. Diabetes 58(5), 1086–1095 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. F. Andreozzi, E. Laratta, C. Procopio, M.L. Hribal, A. Sciacqua, M. Perticone et al., Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol. Cell. Biol. 27(6), 2372–2383 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Y. Fan, J. Ye, F. Shen, Y. Zhu, Y. Yeghiazarians, W. Zhu et al., Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J. Cereb. Blood Flow Metab. 28(1), 90–98 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Y. Yin, W. Liu, G. Ji, Y. Dai, The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis. Eur. J. Cell Biol. 92(4), 150–159 (2013)

    Article  CAS  PubMed  Google Scholar 

  94. O. Huet, E. Laemmel, Y. Fu, L. Dupic, A. Aprico, K.L. Andrews et al., Interleukin 10 antioxidant effect decreases leukocytes/endothelial interaction induced by tumor necrosis factor $\alpha$. Shock 39(1), 83–88 (2013)

    CAS  PubMed  Google Scholar 

  95. Y. Wang, Q. Chen, Z. Zhang, F. Jiang, X. Meng, H. Yan, Interleukin-10 overexpression improves the function of endothelial progenitor cells stimulated with TNF-$\alpha$ through the activation of the STAT3 signaling pathway. Int. J. Mol. Med. 35(2), 471–477 (2015)

    PubMed  Google Scholar 

  96. B.B. Aggarwal, Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3(9), 745–756 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. G. Chen, D.V. Goeddel, TNF-R1 signaling: a beautiful pathway. Science 296(5573), 1634–1635 (2002)

    Article  CAS  PubMed  Google Scholar 

  98. B.B. Aggarwal, S.C. Gupta, J.H. Kim, Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3), 651–665 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. P.J. Naudé, J.A. Boer, P.G. Luiten, U.L. Eisel, Tumor necrosis factor receptor cross-talk. FEBS J. 278(6), 888–898 (2011)

    Article  PubMed  CAS  Google Scholar 

  100. N. Makino, T. Maeda, M. Sugano, S. Satoh, R. Watanabe, N. Abe, High serum TNF-$\alpha$ level in Type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J. Diabetes Complic. 19(6), 347–355 (2005)

    Article  Google Scholar 

  101. K. Zorena, J. Mysliwska, M. Mysliwiec, A. Balcerska, P. Lipowski, K. Raczynska, Relationship between serum levels of tumor necrosis factor-alpha and interleukin-6 in diabetes mellitus type 1 children. Central Eur J Immunol. 32(3), 124 (2007)

    CAS  Google Scholar 

  102. X. Gao, S. Belmadani, A. Picchi, X. Xu, B.J. Potter, N. Tewari-Singh et al., Tumor necrosis factor-$\alpha$ induces endothelial dysfunction in Leprdb mice. Circulation 115(2), 245–254 (2007)

    Article  CAS  PubMed  Google Scholar 

  103. H. Zhang, J. Zhang, Z. Ungvari, C. Zhang, Resveratrol improves endothelial function role of TNF$\alpha$ and vascular oxidative stress. Arterioscler. Thrombos. Vasc. Biol. 29(8), 1164–1171 (2009)

    Article  CAS  Google Scholar 

  104. A. Picchi, X. Gao, S. Belmadani, B.J. Potter, M. Focardi, W.M. Chilian et al., Tumor necrosis factor-$\alpha$ induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ. Res. 99(1), 69–77 (2006)

    Article  CAS  PubMed  Google Scholar 

  105. S. Basuroy, D. Tcheranova, S. Bhattacharya, C.W. Leffler, H. Parfenova, Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-$\alpha$-induced apoptosis. Am. J. Physiol.-Cell Physiol. 300(2), C256–C265 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. H.M. Peshavariya, C.J. Taylor, C. Goh, G.-S. Liu, F. Jiang, E.C. Chan et al., Annexin peptide Ac2-26 suppresses TNF $\alpha$-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS ONE 8(4), e60790 (2013). doi:10.1371/journal.pone.0060790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. S. Basuroy, S. Bhattacharya, C.W. Leffler, H. Parfenova, Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-$\alpha$ in cerebral vascular endothelial cells. Am. J. Physiol. Cell Physiol. 296(3), C422–C432 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. J.-M. Li, L.M. Fan, M.R. Christie, A.M. Shah, Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol. Cell. Biol. 25(6), 2320–2330 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. J. van Buul, M. Fernandez-Borja, E. Anthony, P. Hordijk, Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid. Redox Signal. 7(3–4), 308–317 (2005)

    Article  PubMed  Google Scholar 

  110. C. Papaharalambus, W. Sajjad, A. Syed, C. Zhang, M.O. Bergo, R.W. Alexander et al., Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J. Biol. Chem. 280(19), 18790–18796 (2005)

    Article  CAS  PubMed  Google Scholar 

  111. D.N. Meijles, L.M. Fan, B.J. Howlin, J.-M. Li, Molecular insights of p47phox phosphorylation dynamics in the regulation of NADPH oxidase activation and superoxide production. J. Biol. Chem. 289(33), 22759–22770 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. M. Tesauro, F. Schinzari, V. Rovella, D. Melina, N. Mores, A. Barini et al., Tumor necrosis factor-$\alpha$ antagonism improves vasodilation during hyperinsulinemia in metabolic syndrome. Diabetes Care 31(7), 1439–1441 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. H. Dominguez, H. Storgaard, C. Rask-Madsen, H.T. Steffen, N. Ihlemann, N.D. Baunbjerg et al., Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42(6), 517–525 (2004)

    Article  CAS  Google Scholar 

  114. C.V. Desouza, F.G. Hamel, K. Bidasee, K. O’Connell, Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction. Diabetes 60(4), 1286–1294 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. T.-G. Chen, Z.-Y. Zhong, G.-F. Sun, Y.-X. Zhou, Y. Zhao, Effects of tumour necrosis factor-alpha on activity and nitric oxide synthase of endothelial progenitor cells from peripheral blood. Cell Prolif. 44(4), 352–359 (2011)

    Article  PubMed  CAS  Google Scholar 

  116. A. Hoffmann, D. Baltimore, Circuitry of nuclear factor kappaB signaling. Immunol. Rev. 210, 171–186 (2006)

    Article  PubMed  Google Scholar 

  117. M.S. Hayden, S. Ghosh, Signaling to NF-$\kappa$B. Genes Dev. 18(18), 2195–2224 (2004)

    Article  CAS  PubMed  Google Scholar 

  118. A. Bierhaus, S. Schiekofer, M. Schwaninger, M. Andrassy, P.M. Humpert, J. Chen et al., Diabetes-associated sustained activation of the transcription factor nuclear factor-$\kappa$B. Diabetes 50(12), 2792–2808 (2001)

    Article  CAS  PubMed  Google Scholar 

  119. Y. Hasegawa, T. Saito, T. Ogihara, Y. Ishigaki, T. Yamada, J. Imai et al., Blockade of the nuclear factor-$\kappa$B pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation 125(9), 1122–1133 (2012)

    Article  CAS  PubMed  Google Scholar 

  120. G.L. Pierce, L.A. Lesniewski, B.R. Lawson, S.D. Beske, D.R. Seals, Nuclear factor-$\kappa$B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 119(9), 1284–1292 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. G. Guan, H. Han, Y. Yang, Y. Jin, X. Wang, X. Liu, Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-$\kappa$B signal. Endocrine 47(3), 764–771 (2014)

    Article  CAS  PubMed  Google Scholar 

  122. S. Brouard, P.O. Berberat, E. Tobiasch, M.P. Seldon, F.H. Bach, M.P. Soares, Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-$\kappa$B to protect endothelial cells from tumor necrosis factor-$\alpha$-mediated apoptosis. J. Biol. Chem. 277(20), 17950–17961 (2002)

    Article  CAS  PubMed  Google Scholar 

  123. T. Kisseleva, L. Song, M. Vorontchikhina, N. Feirt, J. Kitajewski, C. Schindler, NF-$\kappa$B regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Investig. 116(11), 2955 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. A. Pfosser, C. El-Aouni, I. Pfisterer, M. Dietz, F. Globisch, G. Stachel et al., NF $\kappa$B activation in embryonic endothelial progenitor cells enhances neovascularization via PSGL-1 mediated recruitment: novel role for LL37. Stem Cells 28(2), 376–385 (2010)

    CAS  PubMed  Google Scholar 

  125. K. Ji, C. Xing, F. Jiang, X. Wang, H. Guo, J. Nan et al., Benzo [a] pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-$\kappa$B pathway. Int. J. Mol. Med. 31(4), 922–930 (2013)

    CAS  PubMed  Google Scholar 

  126. S. Parthasarathy, A. Raghavamenon, M.O. Garelnabi, N. Santanam, Oxidized low-density lipoprotein. Free Radic. Antioxid. Protoc. 610, 403–417 (2010)

    Article  CAS  Google Scholar 

  127. M.T. Marin, P.S. Dasari, J.B. Tryggestad, C.E. Aston, A.M. Teague, K.R. Short, Oxidized HDL and LDL in adolescents with type 2 diabetes compared to normal weight and obese peers. J. Diabetes Complic. 29(5), 679–685 (2015)

    Article  Google Scholar 

  128. G. Maiolino, G. Rossitto, P. Caielli, V. Bisogni, G.P. Rossi, L.A. Calò, The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediat. Inflamm. (2013). doi:10.1155/2013/714653

  129. J. Galle, R. Schneider, B. Winner, C. Lehmann-Bodem, R. Schinzel, G. Münch et al., Glyc-oxidized LDL impair endothelial function more potently than oxidized LDL: role of enhanced oxidative stress. Atherosclerosis 138(1), 65–77 (1998)

    Article  CAS  PubMed  Google Scholar 

  130. Y. Shi, F. Cosentino, G.G. Camici, A. Akhmedov, P.M. Vanhoutte, F.C. Tanner et al., Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-$\beta$, and c-Jun N-terminal kinase in human endothelial cells. Arterioscler. Thrombos. Vasc. Biol. 31(9), 2090–2097 (2011)

    Article  CAS  Google Scholar 

  131. Y. Shi, T.F. Lüscher, G.G. Camici, Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS ONE 9(9), e107787 (2014). doi:10.1371/journal.pone.0107787

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. K. Yamamoto, A. Kakino, H. Takeshita, N. Hayashi, L. Li, A. Nakano et al. Oxidized LDL (oxLDL) activates the angiotensin II type 1 receptor by binding to the lectin-like oxLDL receptor. FASEB J. fj–15 (2015). doi:10.1096/fj.15-271627

  133. C.-S. Chu, Y.-C. Wang, L.-S. Lu, B. Walton, H.R. Yilmaz, R.Y. Huang et al., Electronegative low-density lipoprotein increases C-reactive protein expression in vascular endothelial cells through the LOX-1 receptor. PLoS ONE 8(8), e70533 (2013). doi:10.1371/journal.pone.0070533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. S. Hamed, B. Brenner, Z. Abassi, A. Aharon, D. Daoud, A. Roguin, Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb. Res. 126(3), 166–174 (2010)

    Article  CAS  PubMed  Google Scholar 

  135. T. Imanishi, T. Hano, T. Sawamura, I. Nishio, Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin. Exp. Pharmacol. Physiol. 31(7), 407–413 (2004)

    Article  CAS  PubMed  Google Scholar 

  136. K.-T. Ji, L. Qian, J.-L. Nan, Y.-J. Xue, S.-Q. Zhang, G.-Q. Wang et al., Ox-LDL induces dysfunction of endothelial progenitor cells via activation of NF-κB. Biomed. Res. Int. (2015). doi:10.1155/2015/175291

    Google Scholar 

  137. F.X. Ma, B. Zhou, Z. Chen, Q. Ren, S.H. Lu, T. Sawamura et al., Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J. Lipid Res. 47(6), 1227–1237 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. B. Shao, J.W. Heinecke, Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. J. Proteomics 74(11), 2289–2299 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. B. Pan, Y. Ma, H. Ren, Y. He, Y. Wang, X. Lv et al., Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS ONE 7(11), e48530 (2012). doi:10.1371/journal.pone.0048530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. A. Undurti, Y. Huang, J.A. Lupica, J.D. Smith, J.A. DiDonato, S.L. Hazen, Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 284(45), 30825–30835 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. T. Matsunaga, S. Hokari, I. Koyama, T. Harada, T. Komoda, NF-$\kappa$B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem. Biophys. Res. Commun. 303(1), 313–319 (2003)

    Article  CAS  PubMed  Google Scholar 

  142. O. Van Oostrom, M. Nieuwdorp, P. Westerweel, I. Hoefer, R. Basser, E. Stroes et al., Reconstituted HDL increases circulating endothelial progenitor cells in patients with type 2 diabetes. Arterioscler. Thrombos. Vasc. Biol. 27(8), 1864–1865 (2007)

    Article  CAS  Google Scholar 

  143. V. Petoumenos, G. Nickenig, N. Werner, High-density lipoprotein exerts vasculoprotection via endothelial progenitor cells. J. Cell Mol. Med. 13(11–12), 4623–4635 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. C.-Y. Huang, F.-Y. Lin, C.-M. Shih, H.-K. Au, Y.-J. Chang, H. Nakagami et al., Moderate to high concentrations of high-density lipoprotein from healthy subjects paradoxically impair human endothelial progenitor cells and related angiogenesis by activating Rho-associated kinase pathways. Arterioscler. Thrombos. Vasc. Biol. 32(10), 2405–2417 (2012)

    Article  CAS  Google Scholar 

  145. J. Wu, Z. He, X. Gao, F. Wu, R. Ding, Y. Ren et al., Oxidized high-density lipoprotein impairs endothelial progenitor cells’ function by activation of CD36-MAPK-TSP-1 pathways. Antioxid. Redox Signal. 22(4), 308–324 (2015). doi:10.1089/ars.2013.5743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. C. Schmitz-Peiffer, Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59(10), 2351–2353 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Q.-J. Zhang, W.L. Holland, L. Wilson, J.M. Tanner, D. Kearns, J.M. Cahoon et al., Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 61(7), 1848–1859 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. V.C. Mehra, E. Jackson, X.M. Zhang, X.-C. Jiang, L.W. Dobrucki, J. Yu et al., Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis. Am. J. Pathol. 184(5), 1562–1576 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. L. Chun, Z. Junlin, W. Aimin, L. Niansheng, C. Benmei, L. Minxiang, Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 93(1), 77–85 (2011)

    Article  PubMed  CAS  Google Scholar 

  150. D.X. Zhang, A.-P. Zou, P.-L. Li, Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 284(2), H605–H612 (2003)

    Article  CAS  PubMed  Google Scholar 

  151. M. Fu, Z. Li, T. Tan, W. Guo, N. Xie, Q. Liu et al., Akt/eNOS signaling pathway mediates inhibition of endothelial progenitor cells by palmitate-induced ceramide. Am. J. Physiol. Heart Circ. Physiol. 308(1), H11–H17 (2015)

    Article  CAS  PubMed  Google Scholar 

  152. P. Zhu, G. Chen, T. You, J. Yao, Q. Jiang, X. Lin et al., High FFA-induced proliferation and apoptosis in human umbilical vein endothelial cell partly through Wnt/$\beta$-catenin signal pathway. Mol. Cell. Biochem. 338(1–2), 123–131 (2010)

    Article  CAS  PubMed  Google Scholar 

  153. X.L. Wang, L. Zhang, K. Youker, M.-X. Zhang, J. Wang, S.A. LeMaire et al., Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55(8), 2301–2310 (2006)

    Article  CAS  PubMed  Google Scholar 

  154. W.-Y. Zhang, E. Schwartz, Y. Wang, J. Attrep, Z. Li, P. Reaven, Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26(3), 514–519 (2006)

    Article  CAS  PubMed  Google Scholar 

  155. M. Artwohl, A. Lindenmair, V. Sexl, C. Maier, G. Rainer, A. Freudenthaler et al., Different mechanisms of saturated versus polyunsaturated FFA-induced apoptosis in human endothelial cells. J. Lipid Res. 49(12), 2627–2640 (2008)

    Article  CAS  PubMed  Google Scholar 

  156. K. Staiger, H. Staiger, C. Weigert, C. Haas, H.-U. Häring, M. Kellerer, Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-$\kappa$B activation. Diabetes 55(11), 3121–3126 (2006)

    Article  CAS  PubMed  Google Scholar 

  157. Y. Lu, L. Qian, Q. Zhang, B. Chen, L. Gui, D. Huang et al., Palmitate induces apoptosis in mouse aortic endothelial cells and endothelial dysfunction in mice fed high-calorie and high-cholesterol diets. Lifesciences 92(24), 1165–1173 (2013)

    Article  CAS  Google Scholar 

  158. Z. Gao, H. Zhang, J. Liu, C.W. Lau, P. Liu, Z.Y. Chen et al., Cyclooxygenase-2-dependent oxidative stress mediates palmitate-induced impairment of endothelium-dependent relaxations in mouse arteries. Biochem. Pharmacol. 91(4), 474–482 (2014)

    Article  CAS  PubMed  Google Scholar 

  159. Q. Wang, X.-L. Cheng, D.-Y. Zhang, X.-J. Gao, L. Zhou, X.-Y. Qin et al., Tectorigenin attenuates palmitate-induced endothelial insulin resistance via targeting ROS-associated inflammation and IRS-1 pathway. PLoS ONE 8(6), e66417 (2013). doi:10.1371/journal.pone.0066417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. A. Trombetta, G. Togliatto, A. Rosso, P. Dentelli, C. Olgasi, P. Cotogni et al., Increase of palmitic acid concentration impairs endothelial progenitor cell and bone marrow-derived progenitor cell bioavailability role of the STAT5/PPAR$\gamma$ transcriptional complex. Diabetes 62(4), 1245–1257 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. W.-X. Guo, Q.-D. Yang, Y.-H. Liu, X.-Y. Xie, M. Wang, R.-C. Niu, Palmitic and linoleic acids impair endothelial progenitor cells by inhibition of Akt/eNOS pathway. Arch. Med. Res. 39(4), 434–442 (2008)

    Article  CAS  PubMed  Google Scholar 

  162. X. Gao, H. Zhang, A.M. Schmidt, C. Zhang, AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 295(2), H491–H498 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. M.-P. Wautier, O. Chappey, S. Corda, D.M. Stern, A.M. Schmidt, J.-L. Wautier, Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280(5), E685–E694 (2001)

    CAS  PubMed  Google Scholar 

  164. K.-C. Lan, C.-Y. Chiu, C.-W. Kao, K.-H. Huang, C.-C. Wang, K.-T. Huang et al., Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-$\kappa$B-activated cyclooxygenase-2/prostaglandin E 2 up-regulation. PLoS ONE 8(6), e66781 (2013). doi:10.1371/journal.pone.0066781

    Article  CAS  Google Scholar 

  165. S.-J. Yoon, Y.W. Yoon, B.K. Lee, H.M. Kwon, K.-C. Hwang, M. Kim et al., Potential role of HMG CoA reductase inhibitor on oxidative stress induced by advanced glycation endproducts in vascular smooth muscle cells of diabetic vasculopathy. Exp. Mol. Med. 41(11), 802–811 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Y. Ishibashi, T. Matsui, S. Maeda, Y. Higashimoto, S. Yamagishi, Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc Diabetol. 12, 125 (2013)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  167. G. Togliatto, A. Trombetta, P. Dentelli, A. Rosso, M. Brizzi, MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose-and AGE-mediated vascular cell damage. Diabetologia 54(7), 1930–1940 (2011)

    Article  CAS  PubMed  Google Scholar 

  168. C. Shen, Q. Li, Y. Zhang, G. Ma, Y. Feng, Q. Zhu et al., Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed. Pharmacother. 64(1), 35–43 (2010)

    Article  CAS  PubMed  Google Scholar 

  169. J. Chen, M. Song, S. Yu, P. Gao, Y. Yu, H. Wang et al., Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol. Cell. Biochem. 335(1–2), 137–146 (2010)

    Article  CAS  PubMed  Google Scholar 

  170. Q. Chen, L. Dong, L. Wang, L. Kang, B. Xu, Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2. Biochem. Biophys. Res. Commun. 381(2), 192–197 (2009)

    Article  CAS  PubMed  Google Scholar 

  171. S. Ueda, S. Yamagishi, T. Matsui, Y. Noda, S. Ueda, Y. Jinnouchi et al., Serum levels of advanced glycation end products (AGEs) are inversely associated with the number and migratory activity of circulating endothelial progenitor cells in apparently healthy subjects. Cardiovasc. Ther. 30(4), 249–254 (2012)

    Article  CAS  PubMed  Google Scholar 

  172. H. Li, X. Zhang, X. Guan, X. Cui, Y. Wang, H. Chu et al., Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc. Diabetol. 11(1), 46 (2012)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. A.D. Bhatwadekar, J.V. Glenn, G. Li, T.M. Curtis, T.A. Gardiner, A.W. Stitt, Advanced glycation of fibronectin impairs vascular repair by endothelial progenitor cells: implications for vasodegeneration in diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 49(3), 1232–1241 (2008)

    Article  Google Scholar 

  174. S.F. Travis, A.D. Morrison, R.S. Clements, A.I. Winegrad, F.A. Oski, The sorbitol pathway of the human erythrocyte. Pediatr. Res. 4(5), 466 (1970)

    Article  Google Scholar 

  175. S.S. Chung, E.C. Ho, K.S. Lam, S.K. Chung, Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 14(suppl 3), S233–S236 (2003)

    Article  CAS  PubMed  Google Scholar 

  176. H.M. Cheng, R.G. González, The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metab., Clin. Exp. 35((4 Suppl 1)), 10–14 (1986)

    Article  CAS  Google Scholar 

  177. Y.C. Hwang, S. Bakr, C.A. Ellery, P.J. Oates, R. Ramasamy, Sorbitol dehydrogenase: a novel target for adjunctive protection of ischemic myocardium. FASEB J. 17(15), 2331–2333 (2003)

    CAS  PubMed  Google Scholar 

  178. J.R. Williamson, K. Chang, M. Frangos, K.S. Hasan, Y. Ido, T. Kawamura et al., Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42(6), 801–813 (1993)

    Article  CAS  PubMed  Google Scholar 

  179. T.J. Guzik, S. Mussa, D. Gastaldi, J. Sadowski, C. Ratnatunga, R. Pillai et al., Mechanisms of increased vascular superoxide production in human diabetes mellitus role of NAD (P) H oxidase and endothelial nitric oxide synthase. Circulation 105(14), 1656–1662 (2002)

    Article  CAS  PubMed  Google Scholar 

  180. M. Takeuchi, M. Iwaki, J. Takino, H. Shirai, M. Kawakami, R. Bucala et al., Immunological detection of fructose-derived advanced glycation end-products. Lab. Invest. 90(7), 1117–1127 (2010)

    Article  CAS  PubMed  Google Scholar 

  181. S. Lightman, Does aldose reductase have a role in the development of the ocular complications of diabetes? Eye 7(2), 238–241 (1993)

    Article  PubMed  Google Scholar 

  182. S. Yagihashi, S.I. Yamagishi, R. Wada Ri, M. Baba, T.C. Hohman, C. Yabe-Nishimura et al., Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 124((Pt 12)), 2448–2458 (2001)

    Article  CAS  PubMed  Google Scholar 

  183. A.M. Gonzalez, M. Sochor, P. McLean, The effect of an aldose reductase inhibitor (sorbinil) on the level of metabolites in lenses of diabetic rats. Diabetes 32(5), 482–485 (1983)

    Article  CAS  PubMed  Google Scholar 

  184. M. Mira, M. Azevedo, C. Manso, The neutralization of hydroxyl radical by silibin, sorbinil and bendazac. Free Radic. Res. 4(2), 125–129 (1987)

    Article  CAS  Google Scholar 

  185. X. Du, T. Matsumura, D. Edelstein, L. Rossetti, Z. Zsengellér, C. Szabó et al., Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Investig. 112(7), 1049 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. P.J. Thornalley, The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 269(1), 1 (1990)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. D.J. Ceradini, D. Yao, R.H. Grogan, M.J. Callaghan, D. Edelstein, M. Brownlee et al., Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem. 283(16), 10930–10938 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. H. Thangarajah, D. Yao, E.I. Chang, Y. Shi, L. Jazayeri, I.N. Vial et al., The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. T.-S. Lee, L.C. MacGregor, S.J. Fluharty, G.L. King et al., Differential regulation of protein kinase C and (Na, K)-adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells. J Clin. Investig. 83(1), 90–94 (1989)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. T.-S. Lee, K.A. Saltsman, H. Ohashi, G.L. King, Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. 86(13), 5141–5145 (1989)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. T. Inoguchi, R. Battan, E. Handler, J.R. Sportsman, W. Heath, G.L. King, Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. 89(22), 11059–11063 (1992)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. T. Inoguchi, F. Ueda, F. Umeda, T. Yamashita, H. Nawata, Inhibition of intercellular communication via gap junction in cultured aortic endothelial cells by elevated glucose and phorbol ester. Biochem. Biophys. Res. Commun. 208(2), 492–497 (1995)

    Article  CAS  PubMed  Google Scholar 

  193. J.J. Lynch, T.J. Ferro, F.A. Blumenstock, A.M. Brockenauer, A.B. Malik, Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin. Invest. 85(6), 1991–1998 (1990)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. N.S. Harhaj, E.A. Felinski, E.B. Wolpert, J.M. Sundstrom, T.W. Gardner, D.A. Antonetti, VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest. Ophthalmol. Vis. Sci. 47(11), 5106–5115 (2006)

    Article  PubMed  Google Scholar 

  195. F. Cosentino, M. Eto, P. De Paolis, B. van der Loo, M. Bachschmid, V. Ullrich et al., High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells role of protein kinase C and reactive oxygen species. Circulation 107(7), 1017–1023 (2003)

    Article  CAS  PubMed  Google Scholar 

  196. L. Quagliaro, L. Piconi, R. Assaloni, L. Martinelli, E. Motz, A. Ceriello, Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells the role of protein kinase C and NAD (P) H-oxidase activation. Diabetes 52(11), 2795–2804 (2003)

    Article  CAS  PubMed  Google Scholar 

  197. P. Geraldes, J. Hiraoka-Yamamoto, M. Matsumoto, A. Clermont, M. Leitges, A. Marette et al., Activation of PKC-$\delta$ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 15(11), 1298–1306 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. F. Cosentino, P. Francia, G.G. Camici, P.G. Pelicci, M. Volpe, T.F. Lüscher, Final common molecular pathways of aging and cardiovascular disease role of the p66Shc protein. Arterioscler. Thrombos. Vasc. Biol. 28(4), 622–628 (2008)

    Article  CAS  Google Scholar 

  199. G.M. Pieper et al., Activation of nuclear factor-$\kappa$B in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J. Cardiovasc. Pharmacol. 30(4), 528–532 (1997)

    Article  CAS  PubMed  Google Scholar 

  200. Y. Hou, Y. Wu, S.M. Farooq, X. Guan, S. Wang, Y. Liu et al., A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis. Stem Cell Res. 14(2), 133–143 (2014)

    Article  PubMed  CAS  Google Scholar 

  201. M.G. Buse, Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 290(1), E1–E8 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. C. Weigert, K. Brodbeck, M. Sawadogo, H.U. Häring, E.D. Schleicher, Upstream stimulatory factor (USF) proteins induce human TGF-$\beta$1 gene activation via the glucose-response element-1013/-1002 in mesangial cells up-regulation of USF activity by the hexosamine biosynthetic pathway. J. Biol. Chem. 279(16), 15908–15915 (2004)

    Article  CAS  PubMed  Google Scholar 

  203. X.-L. Du, D. Edelstein, L. Rossetti, I.G. Fantus, H. Goldberg, F. Ziyadeh et al., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. 97(22), 12222–12226 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. M. Horal, Z. Zhang, R. Stanton, A. Virkamäki, M.R. Loeken, Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res. A 70(8), 519–527 (2004)

    Article  CAS  Google Scholar 

  205. B. Musicki, M.F. Kramer, R.E. Becker, A.L. Burnett, Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc. Natl. Acad. Sci. U.S.A. 102(33), 11870–11875 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. B.L. Trumpower, The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265(20), 11409–11412 (1990)

    CAS  PubMed  Google Scholar 

  207. S.S. Korshunov, V.P. Skulachev, A.A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416(1), 15–18 (1997)

    Article  CAS  PubMed  Google Scholar 

  208. M. Brownlee, The pathobiology of diabetic complications a unifying mechanism. Diabetes 54(6), 1615–1625 (2005)

    Article  CAS  PubMed  Google Scholar 

  209. X.L. Du, D. Edelstein, S. Dimmeler, Q. Ju, C. Sui, M. Brownlee, Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Investig. 108(9), 1341 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  210. F. Giacco, M. Brownlee, Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. M.-C. Desco, M. Asensi, R. Márquez, J. Martínez-Valls, M. Vento, F.V. Pallardó et al., Xanthine oxidase is involved in free radical production in type 1 diabetes protection by allopurinol. Diabetes 51(4), 1118–1124 (2002)

    Article  CAS  PubMed  Google Scholar 

  212. K. Guo, J. Lu, Y. Huang, M. Wu, L. Zhang, H. Yu et al., Protective role of PGC-1$\alpha$ in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE 10(4), e0125176 (2015). doi:10.1371/journal.pone.0125176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  213. E.J. Marrotte, D.-D. Chen, J.S. Hakim, A.F. Chen, Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J. Clin. Investig. 120(12), 4207 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. X.-R. Wang, M.-W. Zhang, D.-D. Chen, Y. Zhang, A.F. Chen, AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. Am. J. Physiol.-Endocrinol. Metab. 300(6), E1135–E1145 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. V. Di Stefano, C. Cencioni, G. Zaccagnini, A. Magenta, M.C. Capogrossi, F. Martelli, p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovasc. Res. (2009). doi:10.1093/cvr/cvp082

    PubMed  Google Scholar 

  216. B. Antuna-Puente, B. Feve, S. Fellahi, J.-P. Bastard, Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 34(1), 2–11 (2008)

    Article  CAS  PubMed  Google Scholar 

  217. K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.-F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)

    Article  CAS  PubMed  Google Scholar 

  218. M.I. Saad, M.A. Kamel, M.Y. Hanafi, Modulation of adipocytokines production and serum NEFA level by metformin, glimepiride, and sitagliptin in HFD/STZ diabetic rats. Biochem. Res. Int. (2015). doi:10.1155/2015/138134

    Google Scholar 

  219. S.H. Tawfik, B.F. Mahmoud, M.I. Saad, M. Shehata, M.A. Kamel, M.H. Helmy, Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem. Res. Int. (2015). doi:10.1155/2015/567945

    PubMed Central  PubMed  Google Scholar 

  220. S.R. Kashyap, L.J. Roman, L. Mandarino, R. DeFronzo, M. Bajaj, Hypoadiponectinemia is closely associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. Metab. Syndr. Rel. Disord. 8(5), 459–463 (2010)

    Article  CAS  Google Scholar 

  221. M. Ebrahimi-Mamaeghani, S. Mohammadi, S.R. Arefhosseini, P. Fallah, Z. Bazi, Adiponectin as a potential biomarker of vascular disease. Vasc. Health Risk Manag. 11, 55–70 (2015). doi:10.2147/VHRM.S48753

    PubMed Central  PubMed  Google Scholar 

  222. K. Tan, A. Xu, W. Chow, M. Lam, V. Ai, S. Tam et al., Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J. Clin. Endocrinol. Metab. 89(2), 765–769 (2004)

    Article  CAS  PubMed  Google Scholar 

  223. S. Gustafsson, L. Lind, S. Söderberg, M. Zilmer, J. Hulthe, E. Ingelsson, Oxidative stress and inflammatory markers in relation to circulating levels of adiponectin. Obesity 21(7), 1467–1473 (2013)

    Article  CAS  PubMed  Google Scholar 

  224. X. Xiao, Y. Dong, J. Zhong, R. Cao, X. Zhao, G. Wen et al., Adiponectin protects endothelial cells from the damages induced by the intermittent high level of glucose. Endocrine 40(3), 386–393 (2011)

    Article  CAS  PubMed  Google Scholar 

  225. A.S. Antonopoulos, M. Margaritis, P. Coutinho, C. Shirodaria, C. Psarros, L. Herdman et al., Adiponectin as a link between type 2 diabetes mellitus and vascular NADPH-oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 64, 2207–2219 (2015). doi:10.2337/db14-1011

    Article  CAS  PubMed  Google Scholar 

  226. M. Margaritis, A.S. Antonopoulos, J. Digby, R. Lee, S. Reilly, P. Coutinho et al., Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of eNOS function in human vessels. Circulation 127, 2209–2221 (2013). doi:10.1161/CIRCULATIONAHA.112.001133

    Article  CAS  PubMed  Google Scholar 

  227. X. Wang, H. Pu, C. Ma, T. Jiang, Q. Wei, M. Duan et al., Adiponectin abates atherosclerosis by reducing oxidative stress. Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res. 20, 1792–1800 (2014). doi:10.12659/MSM.892299

    Article  CAS  Google Scholar 

  228. X. Cai, X. Li, L. Li, X.-Z. Huang, Y.-S. Liu, L. Chen et al., Adiponectin reduces carotid atherosclerotic plaque formation in ApoE-/-mice: roles of oxidative and nitrosative stress and inducible nitric oxide synthase. Mol. Med. Rep. 11(3), 1715–1721 (2015)

    PubMed Central  CAS  PubMed  Google Scholar 

  229. J. Chang, Y. Li, Y. Huang, K.S. Lam, R.L. Hoo, W.T. Wong et al., Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 59(11), 2949–2959 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. R. Ouedraogo, X. Wu, S.-Q. Xu, L. Fuchsel, H. Motoshima, K. Mahadev et al., Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells evidence for involvement of a cAMP signaling pathway. Diabetes 55(6), 1840–1846 (2006)

    Article  CAS  PubMed  Google Scholar 

  231. Z. Zhi, Z. Pengfei, T. Xiaoyi, M. Genshan, Adiponectin ameliorates angiotensin II-induced vascular endothelial damage. Cell Stress Chaperones 19(5), 705–713 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  232. H. Motoshima, X. Wu, K. Mahadev, B.J. Goldstein, Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem. Biophys. Res. Commun. 315(2), 264–271 (2004)

    Article  CAS  PubMed  Google Scholar 

  233. S. Plant, B. Shand, P. Elder, R. Scott, Adiponectin attenuates endothelial dysfunction induced by oxidised low-density lipoproteins. Diabetes Vasc. Dis. Res. 5(2), 102–108 (2008)

    Article  Google Scholar 

  234. C.-F. Chen, J. Huang, H. Li, C. Zhang, X. Huang, G. Tong et al., MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1. Gene 565(2), 246–251 (2015). doi:10.1016/j.gene.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  235. A. Xu, P.M. Vanhoutte, Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 302(6), H1231–H1240 (2012)

    Article  CAS  PubMed  Google Scholar 

  236. V. Lavoie, A.-E. Kernaleguen, G. Charron, N. Farhat, M. Cossette, A.M. Mamarbachi et al., Functional effects of adiponectin on endothelial progenitor cells. Obesity 19(4), 722–728 (2011)

    Article  CAS  PubMed  Google Scholar 

  237. S.F. Leicht, T.M. Schwarz, P.C. Hermann, J. Seissler, A. Aicher, C. Heeschen, Adiponectin pretreatment counteracts the detrimental effect of a diabetic environment on endothelial progenitors. Diabetes 60(2), 652–661 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  238. P. Eren, S. Camus, G. Matrone, T.G. Ebrahimian, D. François, A. Tedgui et al., Adiponectinemia controls pro-angiogenic cell therapy. Stem Cells 27(11), 2712–2721 (2009)

    Article  CAS  PubMed  Google Scholar 

  239. Y. Matsuo, T. Imanishi, A. Kuroi, H. Kitabata, T. Kubo, Y. Hayashi et al., Effects of plasma adiponectin levels on the number and function of endothelial progenitor cells in patients with coronary artery disease. Circ. J. 71(9), 1376–1382 (2007)

    Article  CAS  PubMed  Google Scholar 

  240. X. Zhang, Z. Huang, Y. Xie, X. Chen, J. Zhang, Z. Qiu et al., Lower levels of plasma adiponectin and endothelial progenitor cells are associated with large artery atherosclerotic stroke. Int. J. Neurosci. 0, 1–23 (2014). doi:10.3109/00207454.2014.994624

    Google Scholar 

  241. M. Li, J.C. Ho, K.W. Lai, K.K. Au, A. Xu, B.M. Cheung et al., The decrement in circulating endothelial progenitor cells (EPCs) in type 2 diabetes is independent of the severity of the hypoadiponectemia. Diabetes/Metab. Res. Rev. 27(2), 185–194 (2011)

    Article  CAS  Google Scholar 

  242. C.-Y. Chen, M. Asakura, H. Asanuma, T. Hasegawa, J. Tanaka, N. Toh et al., Plasma adiponectin levels predict cardiovascular events in the observational Arita Cohort Study in Japan: the importance of the plasma adiponectin levels. Hypertens. Res. 35(8), 843–848 (2012)

    Article  CAS  PubMed  Google Scholar 

  243. W.T. Wong, X.Y. Tian, A. Xu, J. Yu, C.W. Lau, R.L.C. Hoo et al., Adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetic mice. Cell Metab. 14(1), 104–115 (2011)

    Article  CAS  PubMed  Google Scholar 

  244. M.I. Yilmaz, A. Sonmez, K. Caglar, D.E. Gok, T. Eyileten, M. Yenicesu et al., Peroxisome proliferator-activated receptor $\gamma$ (PPAR-$\gamma$) agonist increases plasma adiponectin levels in type 2 diabetic patients with proteinuria. Endocrine 25(3), 207–214 (2004)

    Article  CAS  PubMed  Google Scholar 

  245. A.C. Könner, J.C. Brüning, Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 16(2), 144–152 (2012)

    Article  PubMed  CAS  Google Scholar 

  246. S. Guzel, A. Seven, A. Kocaoglu, B. Ilk, E.C. Guzel, G.V. Saracoglu et al., Osteoprotegerin, leptin and IL-6: Association with silent myocardial ischemia in type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 10(1), 25–31 (2013)

    Article  CAS  Google Scholar 

  247. S.S. Martin, M.J. Blaha, E.D. Muse, A.N. Qasim, M.P. Reilly, R.S. Blumenthal et al., Leptin and incident cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 239(1), 67–72 (2015)

    Article  CAS  PubMed  Google Scholar 

  248. T. Morioka, M. Emoto, Y. Yamazaki, N. Kawano, S. Imamura, R. Numaguchi et al., Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes. Cardiovasc Diabetol. 13, 10 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  249. T. Kazumi, A. Tsuboi, K. Fukuo, Inverse association of serum leptin with flow-mediated dilatation independent of body fat distribution, insulin resistance, oxidative stress and inflammation in young women. J. Endocrinol. Diabetes Mellit. 2(1), 21–25 (2014)

    Article  CAS  Google Scholar 

  250. L.M. Biasucci, F. Graziani, V. Rizzello, G. Liuzzo, C. Guidone, A.R. De Caterina et al., Paradoxical preservation of vascular function in severe obesity. Am. J. Med. 123(8), 727–734 (2010)

    Article  PubMed  Google Scholar 

  251. S. Benkhoff, A.E. Loot, I. Pierson, A. Sturza, K. Kohlstedt, I. Fleming et al., Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler. Thromb. Vasc. Biol. 32(7), 1605–1612 (2012)

    Article  CAS  PubMed  Google Scholar 

  252. A. Jamroz-Wi’sniewska, A. Gertler, G. Solomon, M.E. Wood, M. Whiteman, J. Beltowski, Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS ONE 9(1), e86744 (2014). doi:10.1371/journal.pone.0086744

    Article  CAS  Google Scholar 

  253. M. Korda, R. Kubant, S. Patton, T. Malinski, Leptin-induced endothelial dysfunction in obesity. Am. J. Physiol. Heart Circ. Physiol. 295(4), H1514–H1521 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  254. J.D. Knudson, U.D. Dincer, C. Zhang, A.N. Swafford, R. Koshida, A. Picchi et al., Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 289(1), H48–H56 (2005)

    Article  CAS  PubMed  Google Scholar 

  255. D. Konukoglu, O. Serin, M.S. Turhan, Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch. Med. Res. 37(5), 602–606 (2006)

    Article  CAS  PubMed  Google Scholar 

  256. G. Pandey, M.S. Shihabudeen, H.P. David, E. Thirumurugan, K. Thirumurugan, Association between hyperleptinemia and oxidative stress in obese diabetic subjects. J. Diabetes Metab. Disord. 14(1), 24 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  257. J. Wang, H. Wang, W. Luo, C. Guo, J. Wang, Y.E. Chen et al., Leptin-induced endothelial dysfunction is mediated by sympathetic nervous system activity. J Am Heart Assoc. 2(5), e000299 (2013). doi:10.1161/JAHA.113.000299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  258. F. Machleidt, P. Simon, A.F. Krapalis, M. Hallschmid, H. Lehnert, F. Sayk, Experimental hyperleptinemia acutely increases vasoconstrictory sympathetic nerve activity in healthy humans. J. Clin. Endocrinol. Metab. 98(3), E491–E496 (2013)

    Article  CAS  PubMed  Google Scholar 

  259. S. Leon-Cabrera, L. Solís-Lozano, K. Suárez-Álvarez, A. González-Chávez, Y.L. Béjar, G. Robles-Díaz et al., Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings. Front. Integr. Neurosci. 7, 62 (2013). doi:10.3389/fnint.2013.00062

    Article  PubMed Central  PubMed  Google Scholar 

  260. C.J. Hukshorn, J.H.N. Lindeman, K.H. Toet, W.H.M. Saris, P.H.C. Eilers, M.S. Westerterp-Plantenga et al., Leptin and the proinflammatory state associated with human obesity. J. Clin. Endocrinol. Metab. 89(4), 1773–1778 (2004)

    Article  CAS  PubMed  Google Scholar 

  261. D. Spruijt-Metz, B. Adar Emken, M.R. Spruijt, J.M. Richey, L.J. Berman, B.R. Belcher et al., CRP is related to higher leptin levels in minority peripubertal females regardless of adiposity levels. Obesity 20(3), 512–516 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  262. P. Jitprasertwong, K.M. Jaedicke, C.J. Nile, P.M. Preshaw, J.J. Taylor, Leptin enhances the secretion of interleukin (IL)-18, but not IL-1β, from human monocytes via activation of caspase-1. Cytokine 65(2), 222–230 (2014)

    Article  CAS  PubMed  Google Scholar 

  263. M.R. Indra, S. Karyono, R. Ratnawati, S.G. Malik, Quercetin suppresses inflammation by reducing ERK1/2 phosphorylation and NF kappa B activation in leptin-induced human umbilical vein endothelial cells (HUVECs). BMC Res. Notes 6(1), 275 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  264. R. Wolk, A. Deb, N.M. Caplice, V.K. Somers, Leptin receptor and functional effects of leptin in human endothelial progenitor cells. Atherosclerosis 183(1), 131–139 (2005)

    Article  CAS  PubMed  Google Scholar 

  265. M.R. Schroeter, M. Leifheit, P. Sudholt, N.-M. Heida, C. Dellas, I. Rohm et al., Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion. Circ. Res. 103(5), 536–544 (2008)

    Article  CAS  PubMed  Google Scholar 

  266. M.R. Schroeter, S. Stein, N.-M. Heida, M. Leifheit-Nestler, I.-F. Cheng, R. Gogiraju et al., Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9. Cardiovasc. Res. (2011). doi:10.1093/cvr/cvr275

    PubMed  Google Scholar 

  267. K.M. Utzschneider, D.B. Carr, J. Tong, T.M. Wallace, R.L. Hull, S. Zraika et al., Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 48(11), 2330–2333 (2005)

    Article  CAS  PubMed  Google Scholar 

  268. G. Hasegawa, M. Ohta, Y. Ichida, H. Obayashi, M. Shigeta, M. Yamasaki et al., Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetol. 42(2), 104–109 (2005)

    Article  CAS  PubMed  Google Scholar 

  269. G. Hoefle, C.H. Saely, L. Risch, L. Koch, F. Schmid, P. Rein et al., Relationship between the adipose-tissue hormone resistin and coronary artery disease. Clin. Chim. Acta 386(1), 1–6 (2007)

    Article  CAS  PubMed  Google Scholar 

  270. H. Ye, H.J. Zhang, A. Xu, R.L.C. Hoo, Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone. PLoS ONE 8(6), e65543 (2013). doi:10.1371/journal.pone.0065543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  271. H. Raff, E.D. Bruder, Adiponectin and resistin in the neonatal rat. Endocrine 29(2), 341–344 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  272. Z. Luo, Y. Zhang, F. Li, J. He, H. Ding, L. Yan et al., Resistin induces insulin resistance by both AMPK-dependent and AMPK-independent mechanisms in HepG2 cells. Endocrine 36(1), 60–69 (2009)

    Article  CAS  PubMed  Google Scholar 

  273. B.H. Chen, Y. Song, E.L. Ding, C.K. Roberts, J.E. Manson, N. Rifai et al., Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care 32(2), 329–334 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  274. Y. Takata, H. Osawa, M. Kurata, M. Kurokawa, J. Yamauchi, M. Ochi et al., Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes. Hypertension 51(2), 534–539 (2008)

    Article  CAS  PubMed  Google Scholar 

  275. C. Menzaghi, S. Bacci, L. Salvemini, C. Mendonca, G. Palladino, A. Fontana et al., Serum resistin, cardiovascular disease and all-cause mortality in patients with type 2 diabetes. PLoS ONE 8(6), e64729 (2013). doi:10.1371/journal.pone.0064729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  276. E.D. Muse, D.I. Feldman, M.J. Blaha, Z.A. Dardari, R.S. Blumenthal, M.J. Budoff et al., The association of resistin with cardiovascular disease in the multi-ethnic study of atherosclerosis. Atherosclerosis. 239(1), 101–108 (2015)

    Article  CAS  PubMed  Google Scholar 

  277. G. Lupattelli, S. Marchesi, T. Ronti, R. Lombardini, S. Bruscoli, R. Bianchini et al., Endothelial dysfunction in vivo is related to monocyte resistin mRNA expression. J. Clin. Pharm. Ther. 32(4), 373–379 (2007)

    Article  CAS  PubMed  Google Scholar 

  278. G.M. Dick, P.S. Katz, M. Farias, M. Morris, J. James, J.D. Knudson et al., Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation. Am. J. Physiol. Heart Circ. Physiol. 291(6), H2997–H3002 (2006)

    Article  CAS  PubMed  Google Scholar 

  279. M.T. Gentile, C. Vecchione, G. Marino, A. Aretini, A. Di Pardo, G. Antenucci et al., Resistin impairs insulin-evoked vasodilation. Diabetes 57(3), 577–583 (2008)

    Article  CAS  PubMed  Google Scholar 

  280. C. Chen, J. Jiang, J.-M. Lü, H. Chai, X. Wang, P.H. Lin et al., Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 299(1), H193–H201 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  281. M.S. Jamaluddin, S. Yan, J. Lü, Z. Liang, Q. Yao, C. Chen, Resistin increases monolayer permeability of human coronary artery endothelial cells. PLoS ONE 8(12), e84576 (2013). doi:10.1371/journal.pone.0084576

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  282. Y. Li, Y. Wang, Q. Li, Y. Chen, S. Sun, W. Zhang et al., Effect of resistin on vascular endothelium secretion dysfunction in rats. Endothelium 14(4–5), 207–214 (2007)

    Article  CAS  PubMed  Google Scholar 

  283. P. Codoñer-Franch, S. Tavárez-Alonso, M. Porcar-Almela, M. Navarro-Solera, Á. Arilla-Codoñer, E. Alonso-Iglesias, Plasma resistin levels are associated with homocysteine, endothelial activation, and nitrosative stress in obese youths. Clin. Biochem. 47(1–2), 44–48 (2014)

    Article  PubMed  CAS  Google Scholar 

  284. J.J. Lozano-Nuevo, T. Estrada-Garcia, H. Vargas-Robles, B.A. Escalante-Acosta, A.F. Rubio-Guerra, Correlation between circulating adhesion molecules and resistin levels in hypertensive type-2 diabetic patients. Inflamm. Allergy Drug Targets 10(1), 27–31 (2011)

    Article  CAS  PubMed  Google Scholar 

  285. N. Al-Daghri, R. Chetty, P.G. McTernan, K. Al-Rubean, O. Al-Attas, A. Jones et al., Serum resistin is associated with C-reactive protein and LDL-cholesterol in type 2 diabetes and coronary artery disease in a Saudi population. Cardiovasc. Diabetol. 4(1), 10 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  286. C. Ying, L. Sui-xin, X. Kang-ling, Z. Wen-liang, D. Lei, L. Yuan et al., MicroRNA-492 reverses high glucose-induced insulin resistance in huvec cells through targeting resistin. Mol. Cell. Biochem. 391(1–2), 117–125 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  287. J.R. Revollo, A. Körner, K.F. Mills, A. Satoh, T. Wang, A. Garten et al., Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6(5), 363–375 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  288. D. Friebe, M. Neef, J. Kratzsch, S. Erbs, K. Dittrich, A. Garten et al., Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia 54(5), 1200–1211 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  289. K. Krzyzanowska, W. Krugluger, F. Mittermayer, R. Rahman, D. Haider, N. Shnawa et al., Increased visfatin concentrations in women with gestational diabetes mellitus. Clin. Sci. 110, 605–609 (2006)

    Article  CAS  PubMed  Google Scholar 

  290. Y.-H. Chang, D.-M. Chang, K.-C. Lin, S.-J. Shin, Y.-J. Lee, Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes/Metab. Res. Rev. 27(6), 515–527 (2011)

    Article  CAS  Google Scholar 

  291. T.-F. Chan, Y.-L. Chen, C.-H. Lee, F.-H. Chou, L.-C. Wu, S.-B. Jong et al., Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J. Soc. Gynecol. Investig. 13(5), 364–367 (2006)

    Article  CAS  PubMed  Google Scholar 

  292. P. Wang, M.M.J. van Greevenbroek, F.G. Bouwman, M.C.G.J. Brouwers, C.J.H. van der Kallen, E. Smit et al., The circulating PBEF/NAMPT/visfatin level is associated with a beneficial blood lipid profile. Pflugers Arch. 454(6), 971–976 (2007)

    Article  CAS  PubMed  Google Scholar 

  293. K. Takebayashi, M. Suetsugu, S. Wakabayashi, Y. Aso, T. Inukai, Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes mellitus. Metabolism 56(4), 451–458 (2007)

    Article  CAS  PubMed  Google Scholar 

  294. A. Kamińska, E. Kopczyńska, M. Bieliński, A. Borkowska, R. Junik, Visfatin concentrations in obese patients in relation to the presence of newly diagnosed glucose metabolism disorders. Endokrynol. Polska. 66(2), 108–113 (2015)

    Article  Google Scholar 

  295. K. Oki, K. Yamane, N. Kamei, H. Nojima, N. Kohno, Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin. Endocrinol. 67(5), 796–800 (2007)

    Article  CAS  Google Scholar 

  296. Y.-C. Chang, T.-J. Chang, W.-J. Lee, L.-M. Chuang, The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids. Metabolism 59(1), 93–99 (2010)

    Article  CAS  PubMed  Google Scholar 

  297. Y.S. Kang, H.K. Song, M.H. Lee, G.J. Ko, D.R. Cha, Plasma concentration of visfatin is a new surrogate marker of systemic inflammation in type 2 diabetic patients. Diabetes Res. Clin. Pract. 89(2), 141–149 (2010)

    Article  CAS  PubMed  Google Scholar 

  298. W. Lee, C. Wu, H. Lin, I. Lee, C. Wu, J. Tseng et al., Visfatin-induced expression of inflammatory mediators in human endothelial cells through the NF-$\kappa$B pathway. Int. J. Obes. 33(4), 465–472 (2009)

    Article  CAS  Google Scholar 

  299. S.-R. Kim, Y.-H. Bae, S.-K. Bae, K.-S. Choi, K.-H. Yoon, T.H. Koo et al., Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim. Biophys. Acta 1783(5), 886–895 (2008)

    Article  CAS  PubMed  Google Scholar 

  300. T. Romacho, L.A. Villalobos, E. Cercas, R. Carraro, C.F. Sánchez-Ferrer, C. Peiró, Visfatin as a novel mediator released by inflamed human endothelial cells. PLoS ONE 8(10), e78283 (2013). doi:10.1371/journal.pone.0078283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  301. P. Saddi-Rosa, C. Oliveira, F. Crispim, F. Giuffrida, V. De Lima, J. Vieira et al., Association of circulating levels of nicotinamide phosphoribosyltransferase (NAMPT/Visfatin) and of a frequent polymorphism in the promoter of the NAMPT gene with coronary artery disease in diabetic and non-diabetic subjects. Cardiovasc. Diabetol. 12(1), 119 (2013)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  302. R. Adya, B.K. Tan, J. Chen, H.S. Randeva, Nuclear factor-$\kappa$B induction by visfatin in human vascular endothelial cells its role in MMP-2/9 production and activation. Diabetes Care 31(4), 758–760 (2008)

    Article  CAS  PubMed  Google Scholar 

  303. T. Romacho, V. Azcutia, M. Vazquez-Bella, N. Matesanz, E. Cercas, J. Nevado et al., Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia 52(11), 2455–2463 (2009)

    Article  CAS  PubMed  Google Scholar 

  304. M. Xia, C. Zhang, K.M. Boini, A.M. Thacker, P.-L. Li, Membrane raft-lysosome redox signaling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovasc. Res. (2010). doi:10.1093/cvr/cvq286

    PubMed Central  Google Scholar 

  305. S. Vallejo, T. Romacho, J. Angulo, L.A. Villalobos, E. Cercas, A. Leivas et al., Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS ONE 6(11), e27299 (2011). doi:10.1371/journal.pone.0027299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  306. L.A. Villalobos, A. Uryga, T. Romacho, A. Leivas, C.F. Sánchez-Ferrer, J.D. Erusalimsky et al., Visfatin/Nampt induces telomere damage and senescence in human endothelial cells. Int. J. Cardiol. 175(3), 573–575 (2014)

    Article  PubMed  Google Scholar 

  307. Ö.F. Karataş, M. Yıldırım, H. Celik, H. Badem, M. Çaviş, E. Çimentepe, The association between plasma visfatin levels and ED. Int. J. Impot. Res. 27(4), 157–160 (2015). doi:10.1038/ijir.2015.1

    Article  PubMed  CAS  Google Scholar 

  308. N.M. Borradaile, J.G. Pickering, Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 8(2), 100–112 (2009)

    Article  CAS  PubMed  Google Scholar 

  309. F. Lovren, Y. Pan, P.C. Shukla, A. Quan, H. Teoh, P.E. Szmitko et al., Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis. Am. J. Physiol. Endocrinol. Metab. 296(6), E1440–E1449 (2009)

    Article  CAS  PubMed  Google Scholar 

  310. H. Yamawaki, N. Hara, M. Okada, Y. Hara, Visfatin causes endothelium-dependent relaxation in isolated blood vessels. Biochem. Biophys. Res. Commun. 383(4), 503–508 (2009)

    Article  CAS  PubMed  Google Scholar 

  311. S. Chen, L. Sun, H. Gao, L. Ren, N. Liu, G. Song, Visfatin and oxidative stress influence endothelial progenitor cells in obese populations. Endocr. Res. 40, 1–5 (2014)

    CAS  Google Scholar 

  312. Y. Sun, S. Chen, G. Song, L. Ren, L. Wei, N. Liu et al., Effect of visfatin on the function of endothelial progenitor cells in high-fat-fed obese rats and investigation of its mechanism of action. Int. J. Mol. Med. 30(3), 622–628 (2012)

    CAS  PubMed  Google Scholar 

  313. J.-Y. Zhou, L. Chan, S.-W. Zhou, Omentin: linking metabolic syndrome and cardiovascular disease. Curr. Vasc. Pharmacol. 12(1), 136–143 (2014)

    Article  CAS  PubMed  Google Scholar 

  314. H.J. Yoo, S.Y. Hwang, H.C. Hong, H.Y. Choi, S.J. Yang, K.W. Lee et al., Implication of circulating omentin-1 level on the arterial stiffening in type 2 diabetes mellitus. Endocrine 44(3), 680–687 (2013)

    Article  CAS  PubMed  Google Scholar 

  315. L. Brunetti, S. Leone, G. Orlando, C. Ferrante, L. Recinella, A. Chiavaroli et al., Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in intra-thoracic pericardial adipose tissue. Pharmacol. Rep. 66(6), 991–995 (2014)

    Article  CAS  PubMed  Google Scholar 

  316. J.M. Moreno-Navarrete, F. Ortega, A. Castro, M. Sabater, W. Ricart, J.M. Fernández-Real, Circulating omentin as a novel biomarker of endothelial dysfunction. Obesity 19(8), 1552–1559 (2011)

    Article  CAS  PubMed  Google Scholar 

  317. S. Maruyama, R. Shibata, R. Kikuchi, Y. Izumiya, T. Rokutanda, S. Araki et al., Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J. Biol. Chem. 287(1), 408–417 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  318. H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada, Y. Hara, Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun. 408(2), 339–343 (2011)

    Article  CAS  PubMed  Google Scholar 

  319. X. Zhong, X. Li, F. Liu, H. Tan, D. Shang, Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem. Biophys. Res. Commun. 425(2), 401–406 (2012)

    Article  CAS  PubMed  Google Scholar 

  320. M. Blüher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41(2), 176–182 (2012)

    Article  PubMed  CAS  Google Scholar 

  321. C.H. Jung, W.J. Lee, J.Y. Hwang, M.J. Lee, S.M. Seol, Y.M. Kim et al., Vaspin increases nitric oxide bioavailability through the reduction of asymmetric dimethylarginine in vascular endothelial cells. PLoS ONE 7(12), e52346 (2012). doi:10.1371/journal.pone.0052346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  322. C.H. Jung, W.J. Lee, J.Y. Hwang, S.M. Seol, Y.M. Kim, Y. La Lee et al., Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem. Biophys. Res. Commun. 413(2), 264–269 (2011)

    Article  CAS  PubMed  Google Scholar 

  323. S. Phalitakul, M. Okada, Y. Hara, H. Yamawaki, Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation. Acta Physiol. 209(3), 212–219 (2013)

    CAS  Google Scholar 

  324. B.-D. Fu, H. Yamawaki, M. Okada, Y. Hara, Vaspin can not inhibit TNF-alpha-induced inflammation of human umbilical vein endothelial cells. J. Vet. Med. Sci. 71(9), 1201–1207 (2009)

    Article  CAS  PubMed  Google Scholar 

  325. C.H. Jung, M.J. Lee, Y.M. Kang, Y.L. Lee, H.K. Yoon, S.-W. Kang et al., Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc. Diabetol. 13, 41 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  326. S. Liu, Y. Dong, T. Wang, S. Zhao, K. Yang, X. Chen et al., Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA. hy926 cells. Diabetes Res. Clin. Pract. 103(3), 482–488 (2014)

    Article  CAS  PubMed  Google Scholar 

  327. N. Sun, H. Wang, L. Wang, Vaspin alleviates dysfunction of endothelial progenitor cells induced by high glucose via PI3K/Akt/eNOS pathway. Int. J. Clin. Exp. Pathol. 8(1), 482 (2015)

    PubMed Central  PubMed  Google Scholar 

  328. I. Jialal, S. Devaraj, H. Kaur, B. Adams-Huet, A.A. Bremer, Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 98(3), E514–E517 (2013)

    Article  CAS  PubMed  Google Scholar 

  329. A.A. Roman, S.D. Parlee, C.J. Sinal, Chemerin: a potential endocrine link between obesity and type 2 diabetes. Endocrine 42(2), 243–251 (2012)

    Article  CAS  PubMed  Google Scholar 

  330. P. Fülöp, I. Seres, H. Lőrincz, M. Harangi, S. Somodi, G. Paragh, Association of chemerin with oxidative stress, inflammation and classical adipokines in non-diabetic obese patients. J. Cell Mol. Med. 18(7), 1313–1320 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  331. Q. Yan, Y. Zhang, J. Hong, W. Gu, M. Dai, J. Shi et al., The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 41(2), 281–288 (2012)

    Article  PubMed  CAS  Google Scholar 

  332. W. Hu, Q. Yu, J. Zhang, D. Liu, Rosiglitazone ameliorates diabetic nephropathy by reducing the expression of chemerin and ChemR23 in the kidney of streptozotocin-induced diabetic rats. Inflammation 35(4), 1287–1293 (2012)

    Article  CAS  PubMed  Google Scholar 

  333. N.S. Lobato, K.B. Neves, F.P. Filgueira, Z.B. Fortes, M.H.C. Carvalho, R.C. Webb et al., The adipokine chemerin augments vascular reactivity to contractile stimuli via activation of the MEK-ERK1/2 pathway. Life Science 91(13–14), 600–606 (2012)

    Article  CAS  Google Scholar 

  334. K.B. Neves, N.S. Lobato, R.A.M. Lopes, F.P. Filgueira, C.Z. Zanotto, A.M. Oliveira et al., Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? Clin. Sci. 127(2), 111–122 (2014)

    Article  CAS  PubMed  Google Scholar 

  335. L. Wang, T. Yang, Y. Ding, Y. Zhong, L. Yu, M. Peng, Chemerin plays a protective role by regulating human umbilical vein endothelial cell-induced nitric oxide signaling in preeclampsia. Endocrine 48(1), 299–308 (2015)

    Article  CAS  PubMed  Google Scholar 

  336. W. Shen, C. Tian, H. Chen, Y. Yang, D. Zhu, P. Gao et al., Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radic. Biol. Med. 55, 73–82 (2013)

    Article  CAS  PubMed  Google Scholar 

  337. J. Weigert, M. Neumeier, J. Wanninger, M. Filarsky, S. Bauer, R. Wiest et al., Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. 72(3), 342–348 (2010)

    Article  CAS  Google Scholar 

  338. H. Yamawaki, S. Kameshima, T. Usui, M. Okada, Y. Hara, A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 423(1), 152–157 (2012)

    Article  CAS  PubMed  Google Scholar 

  339. I. Castan-Laurell, C. Dray, C. Attané, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40(1), 1–9 (2011)

    Article  CAS  PubMed  Google Scholar 

  340. A.G. Japp, N.L. Cruden, D.A. Amer, V.K. Li, E.B. Goudie, N.R. Johnston et al., Vascular effects of apelin in vivo in man. J. Am. Coll. Cardiol. 52(11), 908–913 (2008)

    Article  CAS  PubMed  Google Scholar 

  341. J.-C. Zhong, X.-Y. Yu, Y. Huang, L.-M. Yung, C.-W. Lau, S.-G. Lin, Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovasc. Res. 74(3), 388–395 (2007)

    Article  CAS  PubMed  Google Scholar 

  342. Y.-C. Liao, Y.-S. Wang, E. Hsi, M.-H. Chang, Y.-Z. You, S.-H.H. Juo, MicroRNA-765 influences arterial stiffness through modulating apelin expression. Mol. Cell. Endocrinol. 411, 11–19 (2015). doi:10.1016/j.mce.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  343. K. Nagano, J. Ishida, M. Unno, T. Matsukura, A. Fukamizu, Apelin elevates blood pressure in ICR mice with L-NAME-induced endothelial dysfunction. Mol. Med. Rep. 7(5), 1371–1375 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  344. Y. Lu, X. Zhu, G.-X. Liang, R.-R. Cui, Y. Liu, S.-S. Wu et al., Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids 43(5), 2125–2136 (2012)

    Article  CAS  PubMed  Google Scholar 

  345. D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548), 1696–1705 (2006)

    Article  CAS  PubMed  Google Scholar 

  346. S. Ravassa, J. Beaumont, A. Huerta, J. Barba, I. Coma-Canella, A. González et al., Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study. Free Radic. Biol. Med. (2015). doi:10.1016/j.freeradbiomed.2015.01.002

    PubMed  Google Scholar 

  347. B. Gallwitz, Extra-pancreatic effects of incretin-based therapies. Endocrine 47(2), 360–371 (2014)

    Article  CAS  PubMed  Google Scholar 

  348. A. Ceriello, A. Novials, E. Ortega, S. Canivell, L. La Sala, G. Pujadas et al., Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 36(8), 2346–2350 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  349. P.C. Van Poppel, M.G. Netea, P. Smits, C.J. Tack, Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care 34(9), 2072–2077 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  350. A. Ceriello, L. La Sala, V. De Nigris, G. Pujadas, R. Testa, A. Uccellatore et al., GLP-1 reduces metalloproteinase-14 and soluble endoglin induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Endocrine. 2015;1–4. doi:10.1007/s12020-015-0565-2

  351. Y. Noda, T. Miyoshi, H. Oe, Y. Ohno, K. Nakamura, N. Toh et al., Alogliptin ameliorates postprandial lipemia and postprandial endothelial dysfunction in non-diabetic subjects: a preliminary report. Cardiovasc. Diabetol. 12(8), 8–12 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  352. J. Koska, M. Sands, C. Burciu, K.M. D’Souza, K. Raravikar, J. Liu et al., Exenatide protects against glucose and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes (2015). doi:10.2337/db14-0976

    PubMed  Google Scholar 

  353. R. Faber, M. Zander, A. Pena, M.M. Michelsen, N.D. Mygind, E. Prescott, Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes-a randomized, single-blinded, cross-over pilot study. Cardiovasc. Diabetol. 14(1), 41 (2015)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  354. L. Ding, J. Zhang, Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33(1), 75–81 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  355. Z. Dong, W. Chai, W. Wang, L. Zhao, Z. Fu, W. Cao et al., Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am. J. Physiol. Endocrinol. Metab. 304(2), E222–E228 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  356. H. Liu, Y. Hu, R.W. Simpson, A.E. Dear, Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasminogen [corrected] activator inhibitor-1 expression. J. Endocrinol. 196(1), 57–65 (2008)

    Article  CAS  PubMed  Google Scholar 

  357. H. Liu, A.E. Dear, L.B. Knudsen, R.W. Simpson, A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J. Endocrinol. 201(1), 59–66 (2009)

    Article  CAS  PubMed  Google Scholar 

  358. N.M. Krasner, Y. Ido, N.B. Ruderman, J.M. Cacicedo, Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS ONE 9(5), e97554 (2014). doi:10.1371/journal.pone.0097554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  359. H. Oeseburg, R.A. de Boer, H. Buikema, P. van der Harst, W.H. van Gilst, H.H. Silljé, Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30(7), 1407–1414 (2010)

    Article  CAS  PubMed  Google Scholar 

  360. Y. Zhan, H. Sun, H. Chen, H. Zhang, J. Sun, Z. Zhang et al., Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)-induced apoptosis. Ann. Transpl. 18(7), BR286–BR291 (2012)

    CAS  Google Scholar 

  361. Y. Ishibashi, T. Matsui, M. Takeuchi, S. Yamagishi, Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391(3), 1405–1408 (2010)

    Article  CAS  PubMed  Google Scholar 

  362. F. Liu, X. Zhang, L. Gong, X. Wang, J. Wang, X. Hou et al., Glucagon-like peptide 1 protects microvascular endothelial cells by inactivating the PARP-1/iNOS/NO pathway. Mol. Cell. Endocrinol. 339(1–2), 25–33 (2011)

    Article  CAS  PubMed  Google Scholar 

  363. S. Salheen, U. Panchapakesan, C. Pollock, O. Woodman, The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose. Pharmacol. Res. 94, 26–33 (2015)

    Article  CAS  PubMed  Google Scholar 

  364. B. Batchuluun, T. Inoguchi, N. Sonoda, S. Sasaki, T. Inoue, Y. Fujimura et al., Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD (P) H oxidase pathway in human aortic endothelial cells. Atherosclerosis 232(1), 156–164 (2014)

    Article  CAS  PubMed  Google Scholar 

  365. B. Schisano, A.L. Harte, K. Lois, P. Saravanan, N. Al-Daghri, O. Al-Attas et al., GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174(1), 46–52 (2012)

    Article  CAS  PubMed  Google Scholar 

  366. X. Xiao-Yun, M. Zhao-Hui, C. Ke, H. Hong-Hui, X. Yan-Hong, Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Ann. Transpl. 17(2), BR35–BR41 (2011)

    Google Scholar 

  367. G.P. Fadini, E. Boscaro, M. Albiero, L. Menegazzo, V. Frison, S. De Kreutzenberg et al., The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes possible role of stromal-derived factor-1$\alpha$. Diabetes Care 33(7), 1607–1609 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  368. C.-Y. Huang, C.-M. Shih, N.-W. Tsao, Y.-W. Lin, P.-H. Huang, S.-C. Wu et al., Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br. J. Pharmacol. 167(7), 1506–1519 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  369. L. Pulkkinen, O. Ukkola, M. Kolehmainen, M. Uusitupa, Ghrelin in diabetes and metabolic syndrome. Int. J. Pept. (2010). doi:10.1155/2010/248948

    PubMed Central  PubMed  Google Scholar 

  370. D. Perez-Tilve, R. Nogueiras, F. Mallo, S.C. Benoit, M. Tschoep, Gut hormones ghrelin, PYY, and GLP-1 in the regulation of energy, balance and metabolism. Endocrine 29(1), 61–71 (2006)

    Article  CAS  PubMed  Google Scholar 

  371. M. Suematsu, A. Katsuki, Y. Sumida, E.C. Gabazza, S. Murashima, K. Matsumoto et al., Decreased circulating levels of active ghrelin are associated with increased oxidative stress in obese subjects. Eur. J. Endocrinol. 153(3), 403–407 (2005)

    Article  CAS  PubMed  Google Scholar 

  372. O. Gruzdeva, E. Uchasova, E. Belik, Y. Dyleva, E. Shurygina, O. Barbarash, Lipid, adipokine and ghrelin levels in myocardial infarction patients with insulin resistance. BMC Cardiovasc. Disord. 14(1), 7 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  373. M. Tesauro, F. Schinzari, M. Iantorno, S. Rizza, D. Melina, D. Lauro et al., Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 112(19), 2986–2992 (2005)

    CAS  PubMed  Google Scholar 

  374. M. Tesauro, F. Schinzari, V. Rovella, N. Di Daniele, D. Lauro, N. Mores et al., Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension 54(5), 995–1000 (2009)

    Article  CAS  PubMed  Google Scholar 

  375. N. Hedayati, S. Annambhotla, J. Jiang, X. Wang, H. Chai, P.H. Lin et al., Growth hormone-releasing peptide ghrelin inhibits homocysteine-induced endothelial dysfunction in porcine coronary arteries and human endothelial cells. J. Vasc. Surg. 49(1), 199–207 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  376. D. Wang, H. Wang, P. Luo, A. Hwang, D. Sun, Y. Wang et al., Effects of ghrelin on homocysteine-induced dysfunction and inflammatory response in rat cardiac microvascular endothelial cells. Cell Biol. Int. 36(6), 511–517 (2012)

    Article  CAS  PubMed  Google Scholar 

  377. G. Togliatto, A. Trombetta, P. Dentelli, S. Gallo, A. Rosso, P. Cotogni et al., Unacylated ghrelin (UnAG) induces oxidative stress resistance in a glucose intolerance mouse model and peripheral artery disease by restoring endothelial cell miR-126 expression. Diabetes (2014). doi:10.2337/db14-0991

    PubMed  Google Scholar 

  378. D. Zhang, W. Wang, Y. Zhou, Y. Chen, L. Han, Y. Liu et al., Ghrelin inhibits apoptosis induced by palmitate in rat aortic endothelial cells. Med. Sci. Monit. Basic Res. 16(12), 396–403 (2010)

    Google Scholar 

  379. Y. Xiang, Q. Li, M. Li, W. Wang, C. Cui, J. Zhang, Ghrelin inhibits AGEs-induced apoptosis in human endothelial cells involving ERK1/2 and PI3K/Akt pathways. Cell Biochem. Funct. 29(2), 149–155 (2011)

    Article  CAS  PubMed  Google Scholar 

  380. W.G. Li, D. Gavrila, X. Liu, L. Wang, S. Gunnlaugsson, L.L. Stoll et al., Ghrelin inhibits proinflammatory responses and nuclear factor-$\kappa$B activation in human endothelial cells. Circulation 109(18), 2221–2226 (2004)

    Article  CAS  PubMed  Google Scholar 

  381. B. Deng, F. Fang, T. Yang, Z. Yu, B. Zhang, X. Xie, Ghrelin inhibits AngII-induced expression of TNF-$\alpha$, IL-8, MCP-1 in human umbilical vein endothelial cells. Int. J. Clin. Exp. Med. 8(1), 579 (2015)

    PubMed Central  PubMed  CAS  Google Scholar 

  382. X. Liu, Q. Xiao, K. Zhao, Y. Gao, Ghrelin inhibits high glucose-induced PC12 cell apoptosis by regulating TLR4/NF-κB pathway. Inflammation 36(6), 1286–1294 (2013)

    Article  CAS  PubMed  Google Scholar 

  383. J. Zhu, C. Zheng, J. Chen, J. Luo, B. Su, Y. Huang et al., Ghrelin protects human umbilical vein endothelial cells against high glucose-induced apoptosis via mTOR/P70S6K signaling pathway. Peptides 52, 23–28 (2014)

    Article  CAS  PubMed  Google Scholar 

  384. X. Chen, Q. Chen, L. Wang, G. Li, Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metab., Clin. Exp. 62(5), 743–752 (2013)

    Article  CAS  Google Scholar 

  385. G. Togliatto, A. Trombetta, P. Dentelli, A. Baragli, A. Rosso, R. Granata et al., Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes 59(4), 1016–1025 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  386. L. Trovato, D. Gallo, F. Settanni, I. Gesmundo, E. Ghigo, R. Granata, Obestatin: is it really doing something. 42:175–85 (2014). doi:10.1159/000358346

  387. R. Granata, D. Gallo, R.M. Luque, A. Baragli, F. Scarlatti, C. Grande et al., Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. FASEB J. 26(8), 3393–3411 (2012)

    Article  CAS  PubMed  Google Scholar 

  388. P. Gu, D. Kang, W. Wang, Y. Chen, Z. Zhao, H. Zheng et al., Relevance of plasma obestatin and early arteriosclerosis in patients with type 2 diabetes mellitus. J. Diabetes Res. (2013). doi:10.1155/2013/563919

    Google Scholar 

  389. A.J. Agnew, E. Robinson, C.M. McVicar, A.P. Harvey, I.H.A. Ali, J.E. Lindsay et al., The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling. Br. J. Pharmacol. 166(1), 327–338 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Maha Mahmoud Samy for her valuable assistance.

Authors’ Contribution

MIS, MAK, and HD designed and edited this review. MIS, TMA, and MMS wrote this review. MY and SHT critically revised this review and helped in literature search and data collection. All the authors have read and approved the final version of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Saad.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, M.I., Abdelkhalek, T.M., Saleh, M.M. et al. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 50, 537–567 (2015). https://doi.org/10.1007/s12020-015-0709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0709-4

Keywords

Navigation