Skip to main content

Advertisement

Log in

A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.

In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be available upon request.

Abbreviations

ASCs:

Adult stem cells

ADSCs:

Adipose-derived stem cells

BMP:

Bone morphogenic protein

CE:

Cornified cell envelope

DAPT:

γ-secretase inhibitor

DFs:

Dermal fibroblasts

ESCs:

Embryonic stem cells

EpiSCs:

Epidermal stem cells

EGF:

Epithelial growth factor

ECM:

Extracellular matrix

FCS:

Fetal calf serum

FSCs:

Fetal stem cells

FGF:

Fibroblast growth factor

HSCs:

Hematopoietic stem cells

hAFSC:

Human amniotic fluid stem cells

eiPSC:

Induced pluripotent stem cells

KGF:

Keratinocyte growth factor

KLCs:

Keratinocyte like cells

MenSCs:

Menstrual blood-derived stem cells

MSCs:

Mesenchymal stem cells

mPSCs:

Monkey pluripotent stem cells

NCDCs:

Neural crest-derived cells

PSCs:

Pluripotent stem cells

PCL:

Polycaprolactone

rADSCs:

Rabbit adipose-derived stem cells

rHFSCs:

Rat hair follicle stem cells

RA:

Retinoic acid

UCMSCs:

Umbilical cord mesenchymal stem cells

References

  1. Monika, P., Chandraprabha, M. N., Rangarajan, A., Waiker, P. V., & Chidambara Murthy, K. N. (2021). Challenges in Healing Wound: Role of Complementary and Alternative Medicine. Frontiers in Nutrition, 8, 791899.

    Article  PubMed  Google Scholar 

  2. Edwards, N. J., Stone, R., Christy, R., Zhang, C. K., Pollok, B., & Cheng, X. (2018). Differentiation of adipose derived stem cells to keratinocyte-like cells on an advanced collagen wound matrix. Tissue and Cell, 53, 68–75.

    Article  CAS  PubMed  Google Scholar 

  3. Zhong, J., Wang, H., Yang, K., Wang, H., Duan, C., Ni, N., An, L., Luo, Y., Zhao, P., Gou, Y., Sheng, S., Shi, D., Chen, C., Wagstaff, W., Hendren-Santiago, B., Haydon, R. C., Luu, H. H., Reid, R. R., Ho, S. H., … Fan, J. (2022). Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioactive Materials, 9, 523–540.

    Article  CAS  PubMed  Google Scholar 

  4. Papalazarou, V., Swaminathan, K., Jaber-Hijazi, F., Spence, H., Lahmann, I., Nixon, C., Salmeron-Sanchez, M., Arnold, H.-H., Rottner, K., & Machesky, L. M. (2020). The Arp2/3 complex is crucial for colonisation of the mouse skin by melanoblasts. Development, 147, 194555.

    Article  Google Scholar 

  5. Shrestha, R., Wen, Y.-T., & Tsai, R.-K. (2019). Generation of hiPSC line TCIERi001-A from normal human epidermal keratinocytes. Stem Cell Research, 41, dev101590.

    Article  Google Scholar 

  6. Petry, L., Kippenberger, S., Meissner, M., Kleemann, J., Kaufmann, R., Rieger, U. M., Wellenbrock, S., Reichenbach, G., Zöller, N., & Valesky, E. (2018). Directing adipose-derived stem cells into keratinocyte-like cells: Impact of medium composition and culture condition. Journal of the European Academy of Dermatology and Venereology, 32, 2010–2019.

    Article  CAS  PubMed  Google Scholar 

  7. Murugan Girija, D., Kalachaveedu, M., Ranga Rao, S., & Subbarayan, R. (2018). Transdifferentiation of human gingival mesenchymal stem cells into functional keratinocytes by Acalypha indica in three-dimensional microenvironment. Journal of Cellular Physiology, 233, 8450–8457.

    Article  CAS  PubMed  Google Scholar 

  8. Păunescu, V., Deak, E., Herman, D., Siska, I. R., Tănasie, G., Bunu, C., Anghel, S., Tatu, C. A., Oprea, T. I., Henschler, R., Rüster, B., Bistrian, R., & Seifried, E. (2007). In vitro differentiation of human mesenchymal stem cells to epithelial lineage. Journal of Cellular and Molecular Medicine, 11, 502–508.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kitala, D., Klama-Baryła, A., Łabuś, W., Ples, M., Misiuga, M., Kraut, M., Szapski, M., Bobiński, R., Pielesz, A., Łos, M. J., & Kucharzewski, M. (2019). Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability. European Journal of Pharmacology, 854, 167–178.

    Article  CAS  PubMed  Google Scholar 

  10. Huo, J., Sun, S., Geng, Z., Sheng, W., Chen, R., Ma, K., Sun, X., & Fu, X. (2018). Bone Marrow-Derived Mesenchymal Stem Cells Promoted Cutaneous Wound Healing by Regulating Keratinocyte Migration via β(2)-Adrenergic Receptor Signaling. Molecular Pharmaceutics, 15, 2513–2527.

    Article  CAS  PubMed  Google Scholar 

  11. Dorn, D. C., & Dorn, A. (2015). Stem cell autotomy and niche interaction in different systems. World Journal of Stem Cells, 7, 922–944.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoon, D., Cho, Y. S., Joo, S. Y., Seo, C. H., & Cho, Y. S. (2020). A clinical trial with a novel collagen dermal substitute for wound healing in burn patients. Biomaterials Science Journal, 8, 823–829.

    Article  CAS  Google Scholar 

  13. Fontanilla, M. R., Casadiegos, S., Bustos, R. H., & Patarroyo, M. A. (2019). Correction to: Comparison of healing of full-thickness skin wounds grafted with multidirectional or unidirectional autologous artificial dermis: Differential delivery of healing biomarkers. Drug Delivery and Translational Research, 9, 414.

    Article  CAS  PubMed  Google Scholar 

  14. Hosseinkhani, M., Mehrabani, D., Karimfar, M. H., Bakhtiyari, S., Manafi, A., & Shirazi, R. (2014). Tissue engineered scaffolds in regenerative medicine. World Journal of Plastic Surgery, 3, 3–7.

    PubMed  PubMed Central  Google Scholar 

  15. Chai, Y. C., Bolander, J., Papantoniou, I., Patterson, J., Vleugels, J., Schrooten, J., & Luyten, F. P. (2017). (*) Harnessing the Osteogenicity of In Vitro Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration. Tissue Engineering Part A, 23, 874–890.

    Article  CAS  PubMed  Google Scholar 

  16. San Juan, L., de Pedro, I., Rodríguez-Luna, A., Villalba, M., Guerrero, A., González, S., & Gandarillas, A. (2021). Cryptomphalus aspersa Eggs Extract Potentiates Human Epidermal Stem Cell Regeneration and Amplification. Cosmetics, 9, 2.

    Article  Google Scholar 

  17. Sah, S. K., Kanaujiya, J. K., Chen, I. P., & Reichenberger, E. J. (2021). Generation of Keratinocytes from Human Induced Pluripotent Stem Cells Under Defined Culture Conditions. Cellular Reprogramming, 23, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J., Hasegawa, T., Wada, A., Maeda, Y., & Ikeda, S. (2021). Keratinocyte-Like Cells Trans-Differentiated from Human Adipose-Derived Stem Cells, Facilitate Skin Wound Healing in Mice. Annals of Dermatology, 33, 324–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Babakhani, A., Hashemi, P., Mohajer Ansari, J., Ramhormozi, P., & Nobakht, M. (2019). In vitro Differentiation of Hair Follicle Stem Cell into Keratinocyte by Simvastatin. Iranian Biomedical Journal, 23, 404–411.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y., Hu, W., Ma, K., Zhang, C., & Fu, X. (2019). Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Reviews and Reports, 15, 680–689.

    Article  PubMed  Google Scholar 

  21. Zhao, H., Shao, Y., Li, H., & Zhou, H. (2019). A novel method to reconstruct epithelial tissue using high-purity keratinocyte lineage cells induced from human embryonic stem cells. Cell Cycle, 18, 264–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang, Z., Li, N., Zhu, D., Ren, L., Shao, Q., Yu, K., & Yang, G. (2021). Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials, 275, 120908.

    Article  CAS  PubMed  Google Scholar 

  23. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339, b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takizawa, H., Karakawa, A., Suzawa, T., Chatani, M., Ikeda, M., Sakai, N., Azetsu, Y., Takahashi, M., Urano, E., Kamijo, R., Maki, K., & Takami, M. (2022). Neural crest-derived cells possess differentiation potential to keratinocytes in the process of wound healing. Biomedicine & Pharmacotherapy, 146, 112593.

    Article  CAS  Google Scholar 

  25. Kao, C.-H. (2021). Application of Concentrated Growth Factors Membrane for Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cell Differentiation towards Keratinocytes. Separations, 8, 61.

    Article  CAS  Google Scholar 

  26. Ibrahim, M. R., Medhat, W., El-Fakahany, H., Abdel-Raouf, H., & Snyder, E. Y. (2020). Deriving Keratinocyte Progenitor Cells and Keratinocytes from Human-Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 54, e119.

    Article  CAS  PubMed  Google Scholar 

  27. Aghmiuni, A. I., Baei, M. S., Keshel, S. H., & Khiyavi, A. A. (2020). Design of novel 3D-scaffold as a potential material to induct epidermal-dermal keratinocytes of human-adipose-derived stem cells and promote fibroblast cells proliferation for skin regeneration. Fibers and Polymers, 21, 33–44.

    Article  CAS  Google Scholar 

  28. Ghauri, A. K., Wahid, M., Mirza, T., & Uddin, J. A. A. (2020). Direct differentiation of cord blood derived mesenchymal stem cells into keratinocytes without feeder layers and cAMP inducers. Pakistan Journal of Medical Sciences, 36, 946–951.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, M., Ma, J., Gao, Y., Dong, M., Zheng, Z., Li, Y., Tan, R., She, Z., & Yang, L. (2020). Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy. Stem Cell Research & Therapy, 11, 141.

    Article  Google Scholar 

  30. Zhong, H., Ren, Z., Wang, X., Miao, K., Ni, W., Meng, Y., Lu, L., Wang, C., Liu, W., Deng, C. X., Xu, R. H., & Chen, G. (2020). Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. International Journal of Biological Sciences, 16, 1450–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai, W. F., Zhu, Y. X., Qin, F. Y., Chang, J. L., Zeng, Y., Wang, J. G., Zhang, Y. Y., & Cheng, Y. X. (2020). Skeletal meroterpenoids from Ganoderma petchii mushrooms that potentially stimulate umbilical cord mesenchymal stem cells. Bioorganic Chemistry, 97, 103675.

    Article  CAS  PubMed  Google Scholar 

  32. Soares, E., & Zhou, H. (2022). Pluripotent Stem Cell Differentiation Toward Functional Basal Stratified Epithelial Cells. Methods in Molecular Biology, 2454, 297–304.

    Article  PubMed  Google Scholar 

  33. Basler, M., Pontiggia, L., Biedermann, T., Reichmann, E., Meuli, M., & Mazzone, L. (2020). Bioengineering of Fetal Skin: Differentiation of Amniotic Fluid Stem Cells into Keratinocytes. Fetal Diagnosis and Therapy, 47, 198–204.

    Article  PubMed  Google Scholar 

  34. Jacków, J., Guo, Z., Hansen, C., Abaci, H. E., Doucet, Y. S., Shin, J. U., Hayashi, R., DeLorenzo, D., Kabata, Y., Shinkuma, S., Salas-Alanis, J. C., & Christiano, A. M. (2019). CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proceedings of the National Academy of Sciences of the United States of America, 116, 26846–26852.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dos Santos, J. F., Borcari, N. R., da Silva Araujo, M., & Nunes, V. A. (2019). Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: Towards an in vitro model of human epidermis. Journal of Cellular Biochemistry, 120, 13141–13155.

    Article  PubMed  Google Scholar 

  36. Uluer, E. T., Vatansever, H. S., Aydede, H., & Ozbilgin, M. K. (2019). Keratinocytes derived from embryonic stem cells induce wound healing in mice. Biotechnic & histochemistry : Official publication of the Biological Stain Commission, 94, 189–198.

    Article  CAS  Google Scholar 

  37. Fatima, Q., Choudhry, N., & Choudhery, M. S. (2018). Umbilical Cord Tissue Derived Mesenchymal Stem Cells can Differentiate into Skin Cells. Open Life Sciences, 13, 544–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Natesan, S., Wrice, N. L., & Christy, R. J. (2019). Peroxisome proliferator-activated receptor-α agonist and all-trans retinoic acid induce epithelial differentiation of subcutaneous adipose-derived stem cells from debrided burn skin. Journal of Cellular Biochemistry, 120, 9213–9229.

    Article  CAS  PubMed  Google Scholar 

  39. Fard, M., Akhavan-Tavakoli, M., Khanjani, S., Zare, S., Edalatkhah, H., Arasteh, S., Mehrabani, D., Zarnani, A. H., Kazemnejad, S., & Shirazi, R. (2018). Bilayer Amniotic Membrane/Nano-fibrous Fibroin Scaffold Promotes Differentiation Capability of Menstrual Blood Stem Cells into Keratinocyte-Like Cells. Molecular Biotechnology, 60, 100–110.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, Y., Park, N., Rim, Y. A., Nam, Y., Jung, H., Lee, K., & Ju, J. H. (2018). Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Research & Therapy, 9, 217.

    Article  CAS  Google Scholar 

  41. Domingues, S., Masson, Y., Marteyn, A., Allouche, J., Perrier, A. L., Peschanski, M., Martinat, C., Baldeschi, C., & Lemaitre, G. (2017). Differentiation of nonhuman primate pluripotent stem cells into functional keratinocytes. Stem Cell Research & Therapy, 8, 285.

    Article  Google Scholar 

  42. Akhavan-Tavakoli, M., Fard, M., Khanjani, S., Zare, S., Edalatkhah, H., Mehrabani, D., Zarnani, A. H., Shirazi, R., & Kazemnejad, S. (2017). In vitro differentiation of menstrual blood stem cells into keratinocytes: A potential approach for management of wound healing. Biologicals : Journal of the International Association of Biological Standardization, 48, 66–73.

    Article  CAS  PubMed  Google Scholar 

  43. Joulai Veijouyeh, S., Mashayekhi, F., Yari, A., Heidari, F., Sajedi, N., Moghani Ghoroghi, F., & Nobakht, M. (2017). In vitro induction effect of 1,25(OH)2D3 on differentiation of hair follicle stem cell into keratinocyte. Biomedical Journal, 40, 31–38.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bayati, V., Abbaspour, M. R., Dehbashi, F. N., Neisi, N., & Hashemitabar, M. (2017). A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: An in vitro and in vivo study. Anatomical Science International, 92, 509–520.

    Article  CAS  PubMed  Google Scholar 

  45. Bhowmick, S., Scharnweber, D., & Koul, V. (2016). Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. Biomaterials, 88, 83–96. https://doi.org/10.1016/j.biomaterials.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  46. Kasap, S., Barutcu, A., Guc, H., Yazgan, S., Kivanc, M., & Vatansever, H. S. (2017). Effects of Keratinocytes Differentiated from Embryonic and Adipogenic Stem Cells on Wound Healing in a Diabetic Mouse Model. Wounds : A Compendium of Clinical Research and Practice, 29, 297–305.

    PubMed  Google Scholar 

  47. Pilehvar-Soltanahmadi, Y., Nouri, M., Martino, M. M., Fattahi, A., Alizadeh, E., Darabi, M., Rahmati-Yamchi, M., & Zarghami, N. (2017). Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Experimental Cell Research, 357, 192–201.

    Article  CAS  PubMed  Google Scholar 

  48. Hosseinzadeh, S., Soleimani, M., Vossoughi, M., Ranjbarvan, P., Hamedi, S., Zamanlui, S., & Mahmoudifard, M. (2017). Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold. Materials Science and Engineering: C, 75, 653–662.

    Article  CAS  PubMed  Google Scholar 

  49. Ghanavati, Z., Orazizadeh, M., Bayati, V., Abbaspour, M. R., Khorsandi, L., Mansouri, E., & Neisi, N. (2016). Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells. Cell Journal, 18, 289–301.

    PubMed  PubMed Central  Google Scholar 

  50. Heidari Keshel, S., Rostampour, M., Khosropour, G., Bandbon, B. A., Baradaran-Rafii, A., & Biazar, E. (2016). Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel. Journal of Biomaterials Science, Polymer Edition, 27, 339–350.

    Article  CAS  PubMed  Google Scholar 

  51. Aguiar, C., Therrien, J., Lemire, P., Segura, M., Smith, L. C., & Theoret, C. L. (2016). Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Veterinary Journal, 48, 338–345.

    Article  CAS  PubMed  Google Scholar 

  52. Li, H., Zhou, H., Fu, X., & Xiao, R. (2016). Directed differentiation of human embryonic stem cells into keratinocyte progenitors in vitro: An attempt with promise of clinical use. In Vitro Cellular and Developmental Biology. Animal, 52, 885–893.

    Article  CAS  PubMed  Google Scholar 

  53. Sun, Q., Li, F., Li, H., Chen, R. H., Gu, Y. Z., Chen, Y., Liang, H. S., You, X. R., Ding, S. S., Gao, L., Wang, Y. L., Qin, M. D., & Zhang, X. G. (2015). Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair. Science and Reports, 5, 11560.

    Article  Google Scholar 

  54. Couteaudier, M., Trapp-Fragnet, L., Auger, N., Courvoisier, K., Pain, B., Denesvre, C., & Vautherot, J. F. (2015). Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations. Stem Cell Res, 14, 224–237.

    Article  CAS  PubMed  Google Scholar 

  55. Mahmood, R., Choudhery, M. S., Mehmood, A., Khan, S. N., & Riazuddin, S. (2015). In Vitro Differentiation Potential of Human Placenta Derived Cells into Skin Cells. Stem Cells International, 2015, 841062.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Movahednia, M. M., Kidwai, F. K., Zou, Y., Tong, H. J., Liu, X., Islam, I., Toh, W. S., Raghunath, M., & Cao, T. (2015). Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span. Tissue Engineering Part A, 21, 1432–1443.

    Article  CAS  PubMed  Google Scholar 

  57. Cherbuin, T., Movahednia, M. M., Toh, W. S., & Cao, T. (2015). Investigation of human embryonic stem cell-derived keratinocytes as an in vitro research model for mechanical stress dynamic response. Stem Cell Reviews and Reports, 11, 460–473.

    Article  CAS  PubMed  Google Scholar 

  58. Xie, F., Tang, X., Zhang, Q., & Deng, C. (2015). Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Molecular medicine reports, 11, 182–188.

    Article  CAS  PubMed  Google Scholar 

  59. Igawa, K., Kokubu, C., Yusa, K., Horie, K., Yoshimura, Y., Yamauchi, K., Suemori, H., Yokozeki, H., Toyoda, M., Kiyokawa, N., Okita, H., Miyagawa, Y., Akutsu, H., Umezawa, A., Katayama, I., & Takeda, J. (2014). Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Stem Cells Translational Medicine, 3, 992–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kidwai, F. K., Cao, T., & Lu, K. (2014). Differentiation of epidermal keratinocytes from human embryonic stem cells. Methods in Molecular Biology, 1195, 13–22.

    Article  PubMed  Google Scholar 

  61. Kogut, I., Roop, D. R., & Bilousova, G. (2014). Differentiation of human induced pluripotent stem cells into a keratinocyte lineage. Methods in Molecular Biology, 1195, 1–12.

    CAS  PubMed  Google Scholar 

  62. Sebastiano, V., Zhen, H. H., Haddad, B., Bashkirova, E., Melo, S. P., Wang, P., Leung, T. L., Siprashvili, Z., Tichy, A., Li, J., Ameen, M., Hawkins, J., Lee, S., Li, L., Schwertschkow, A., Bauer, G., Lisowski, L., Kay, M. A., Kim, S. K., … Oro, A. E. (2014). Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med, 6, 264ra163. https://doi.org/10.1126/scitranslmed.3009540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vatansever, H. S., Uluer, E. T., Aydede, H., & Ozbilgin, M. K. (2013). Analysis of transferred keratinocyte-like cells derived from mouse embryonic stem cells on experimental surgical skin wounds of mouse. Acta Histochemica, 115, 32–41.

    Article  PubMed  Google Scholar 

  64. Mendez, J. J., Ghaedi, M., Steinbacher, D., & Niklason, L. E. (2014). Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Engineering Part A, 20, 1735–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chavez-Munoz, C., Nguyen, K. T., Xu, W., Hong, S. J., Mustoe, T. A., & Galiano, R. D. (2013). Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: Engineering a stratified epidermis. PLoS ONE, 8, e80587.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Itoh, M., Umegaki-Arao, N., Guo, Z., Liu, L., Higgins, C. A., & Christiano, A. M. (2013). Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE, 8, e77673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ravichandran, R., Venugopal, J. R., Sundarrajan, S., Mukherjee, S., Forsythe, J., & Ramakrishna, S. (2013). Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes. Journal of Materials Science. Materials in Medicine, 24, 2863–2871.

    Article  CAS  PubMed  Google Scholar 

  68. Lin, Y. H., Fu, K. Y., Hong, P. D., Ma, H., Liou, N. H., Ma, K. H., Liu, J. C., Huang, K. L., Dai, L. G., Chang, S. C., Yi-Hsin Chan, J., Chen, S. G., Chen, T. M., & Dai, N. T. (2013). The effects of microenvironment on wound healing by keratinocytes derived from mesenchymal stem cells. Annals of Plastic Surgery, 71(Suppl 1), S67-74.

    Article  CAS  PubMed  Google Scholar 

  69. Kidwai, F. K., Liu, H., Toh, W. S., Fu, X., Jokhun, D. S., Movahednia, M. M., Li, M., Zou, Y., Squier, C. A., Phan, T. T., & Cao, T. (2013). Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. The Journal of Investigative Dermatology, 133, 618–628.

    Article  CAS  PubMed  Google Scholar 

  70. Selekman, J. A., Grundl, N. J., Kolz, J. M., & Palecek, S. P. (2013). Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Engineering. Part C, Methods, 19, 949–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan, Y., Liu, Y., Liu, D., He, L., Guan, L., Wang, Y., Nan, X., & Pei, X. (2013). Differentiation of adipose-derived adult stem cells into epithelial-like stem cells. Annals of Anatomy, 195, 212–218.

    Article  CAS  PubMed  Google Scholar 

  72. Fujita, Y., Inokuma, D., Abe, R., Sasaki, M., Nakamura, H., Shimizu, T., & Shimizu, H. (2012). Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clinical and Experimental Dermatology, 37, 658–664.

    Article  CAS  PubMed  Google Scholar 

  73. Li, H., Xu, Y., Fu, Q., & Li, C. (2012). Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture. Tissue Engineering Part A, 18, 1760–1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sivamani, R. K., Schwartz, M. P., Anseth, K. S., & Isseroff, R. R. (2011). Keratinocyte proximity and contact can play a significant role in determining mesenchymal stem cell fate in human tissue. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology, 25, 122–131.

    Article  CAS  PubMed  Google Scholar 

  75. Toai, T. C., Thao, H. D., Gargiulo, C., Thao, N. P., Thuy, T. T. T., Tuan, H. M., Tung, N. T., Filgueira, L., & Strong, D. M. (2011). In vitro culture of Keratinocytes from human umbilical cord blood mesenchymal stem cells: The Saigonese culture. Cell and Tissue Banking, 12, 125–133.

    Article  Google Scholar 

  76. Itoh, M., Kiuru, M., Cairo, M. S., & Christiano, A. M. (2011). Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 8797–8802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Metallo, C. M., Azarin, S. M., Moses, L. E., Ji, L., de Pablo, J. J., & Palecek, S. P. (2010). Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. Tissue Engineering Part A, 16, 213–223.

    Article  CAS  PubMed  Google Scholar 

  78. Nissan, X., Denis, J. A., Saidani, M., Lemaitre, G., Peschanski, M., & Baldeschi, C. (2011). miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification. Developmental Biology, 356, 506–515.

    Article  CAS  PubMed  Google Scholar 

  79. Hewitt, K. J., Shamis, Y., Carlson, M. W., Aberdam, E., Aberdam, D., & Garlick, J. A. (2009). Three-dimensional epithelial tissues generated from human embryonic stem cells. Tissue Engineering Part A, 15, 3417–3426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guenou, H., Nissan, X., Larcher, F., Feteira, J., Lemaitre, G., Saidani, M., Del Rio, M., Barrault, C. C., Bernard, F. X., Peschanski, M., Baldeschi, C., & Waksman, G. (2009). Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: A preclinical study. Lancet, 374, 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  81. Trottier, V., Marceau-Fortier, G., Germain, L., Vincent, C., & Fradette, J. (2008). IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells, 26, 2713–2723.

    Article  PubMed  Google Scholar 

  82. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. The Journal of Immunology, 180, 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  83. Huang, H. J., Gao, Q. S., Tao, B. F., & Jiang, S. W. (2008). Long-term culture of keratinocyte-like cells derived from mouse embryonic stem cells. In Vitro Cellular and Developmental Biology. Animal, 44, 193–203.

    Article  PubMed  Google Scholar 

  84. Metallo, C. M., Ji, L., de Pablo, J. J., & Palecek, S. P. (2008). Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 26, 372–380.

    Article  CAS  PubMed  Google Scholar 

  85. Haase, I., Knaup, R., Wartenberg, M., Sauer, H., Hescheler, J., & Mahrle, G. (2007). In vitro differentiation of murine embryonic stem cells into keratinocyte-like cells. European Journal of Cell Biology, 86, 801–805.

    Article  CAS  PubMed  Google Scholar 

  86. Aberdam, E., Barak, E., Rouleau, M., de LaForest, S., Berrih-Aknin, S., Suter, D. M., Krause, K. H., Amit, M., Itskovitz-Eldor, J., & Aberdam, D. (2008). A pure population of ectodermal cells derived from human embryonic stem cells. Stem Cells, 26, 440–444.

    Article  CAS  PubMed  Google Scholar 

  87. Ji, L., Allen-Hoffmann, B. L., de Pablo, J. J., & Palecek, S. P. (2006). Generation and differentiation of human embryonic stem cell-derived keratinocyte precursors. Tissue Engineering, 12, 665–679.

    Article  CAS  PubMed  Google Scholar 

  88. Iuchi, S., Dabelsteen, S., Easley, K., Rheinwald, J. G., & Green, H. (2006). Immortalized keratinocyte lines derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamolz, L. P., Kolbus, A., Wick, N., Mazal, P. R., Eisenbock, B., Burjak, S., & Meissl, G. (2006). Cultured human epithelium: Human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns : Journal of the International Society for Burn Injuries, 32, 16–19.

    Article  PubMed  Google Scholar 

  90. Brzoska, M., Geiger, H., Gauer, S., & Baer, P. (2005). Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochemical and Biophysical Research Communications, 330, 142–150.

    Article  CAS  PubMed  Google Scholar 

  91. Coraux, C., Hilmi, C., Rouleau, M., Spadafora, A., Hinnrasky, J., Ortonne, J. P., Dani, C., & Aberdam, D. (2003). Reconstituted skin from murine embryonic stem cells. Current Biology, 13, 849–853.

    Article  CAS  PubMed  Google Scholar 

  92. Green, H., Easley, K., & Iuchi, S. (2003). Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 15625–15630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spees, J. L., Olson, S. D., Ylostalo, J., Lynch, P. J., Smith, J., Perry, A., Peister, A., Wang, M. Y., & Prockop, D. J. (2003). Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proceedings of the National Academy of Sciences of the United States of America, 100, 2397–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bagutti, C., Hutter, C., Chiquet-Ehrismann, R., Fassler, R., & Watt, F. M. (2001). Dermal fibroblast-derived growth factors restore the ability of beta(1) integrin-deficient embryonal stem cells to differentiate into keratinocytes. Developmental Biology, 231, 321–333.

    Article  CAS  PubMed  Google Scholar 

  95. Bagutti, C., Wobus, A. M., Fassler, R., & Watt, F. M. (1996). Differentiation of embryonal stem cells into keratinocytes: Comparison of wild-type and beta 1 integrin-deficient cells. Developmental Biology, 179, 184–196.

    Article  CAS  PubMed  Google Scholar 

  96. Ahn, R. S., Taravati, K., Lai, K., Lee, K. M., Nititham, J., Gupta, R., Chang, D. S., Arron, S. T., Rosenblum, M., & Liao, W. (2017). Transcriptional landscape of epithelial and immune cell populations revealed through FACS-seq of healthy human skin. Science and Reports, 7, 1343.

    Article  Google Scholar 

  97. Duhring, L. A. (1895). Cutaneous medicine; a systematic treatise on the diseases of the skin (Vol. 1). Lippincott.

    Google Scholar 

  98. Watt, F. M. (1998). Epidermal stem cells: Markers, patterning and the control of stem cell fate. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 831–837.

    CAS  PubMed Central  Google Scholar 

  99. Gutowska-Owsiak, D., Podobas, E. I., Eggeling, C., Ogg, G. S., & Bernardino de la Serna, J. (2020). Addressing differentiation in live human keratinocytes by assessment of membrane packing order. Frontiers in Cell and Developmental Biology, 8, 573230. https://doi.org/10.3389/fcell.2020.573230

  100. Tata, P. R., Mou, H., Pardo-Saganta, A., Zhao, R., Prabhu, M., Law, B. M., Vinarsky, V., Cho, J. L., Breton, S., & Sahay, A. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 503, 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Z., Lai, J., Li, Y., Zhou, H., Alhaskawi, A., Li, P., Shen, X., Lu, H., & Tu, T. (2023). Could E-cadherin overexpression promote epithelial differentiation of human adipose-derived stem cells by mediating mesenchymal-to-epithelial transition? Medical Hypotheses, 171, 111016.

    Article  CAS  Google Scholar 

  102. Le Guen, L., Marchal, S., Faure, S., & de Santa Barbara, P. (2015). Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cellular and Molecular Life Sciences, 72, 3883–3896.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cermola, F., Patriarca, E. J., & Minchiotti, G. (2022). Generation of Epiblast-Like Cells. Methods in Molecular Biology, 2490, 25–36.

    Article  CAS  PubMed  Google Scholar 

  104. Yang, R., Wang, J., Chen, X., Shi, Y., & Xie, J. (2020). Epidermal Stem Cells in Wound Healing and Regeneration. Stem Cells International, 2020, 9148310.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ghafouri-Fard, S., Khoshbakht, T., Hussen, B. M., Dong, P., Gassler, N., Taheri, M., Baniahmad, A., & Dilmaghani, N. A. (2022). A review on the role of cyclin dependent kinases in cancers. Cancer Cell International, 22, 325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Su, Y., & Besner, G. E. (2014). Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. Journal of Surgical Research, 189(2), 222–231. https://doi.org/10.1016/j.jss.2014.02.055

    Article  CAS  PubMed  Google Scholar 

  107. Kouwenhoven, E. N., Oti, M., Niehues, H., van Heeringen, S. J., Schalkwijk, J., Stunnenberg, H. G., van Bokhoven, H., & Zhou, H. (2015). Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Reports, 16(7), 863–878. https://doi.org/10.15252/embr.201439941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hegazy, M., Perl, A. L., Svoboda, S. A., & Green, K. J. (2022). Desmosomal Cadherins in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 17, 47–72.

    Article  CAS  Google Scholar 

  109. Giroux, V., Lento, A. A., Islam, M., Pitarresi, J. R., Kharbanda, A., Hamilton, K. E., Whelan, K. A., Long, A., Rhoades, B., Tang, Q., Nakagawa, H., Lengner, C. J., Bass, A. J., Wileyto, E. P., Klein-Szanto, A. J., Wang, T. C., & Rustgi, A. K. (2017). Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. The Journal of Clinical Investigation, 127, 2378–2391.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Papoudou-Bai, A., Hatzimichael, E., Barbouti, A., & Kanavaros, P. (2017). Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms. Clinical and Experimental Medicine, 17, 291–304.

    Article  CAS  PubMed  Google Scholar 

  111. Chakravarthy, B. R., Isaacs, R. J., Morley, P., Durkin, J. P., & Whitfield, J. F. (1995). Stimulation of Protein Kinase C during Ca(2+)-induced keratinocyte differentiation. Selective blockade of MARCKS phosphorylation by calmodulin. Journal of Biological Chemistry, 270(3), 1362–8. https://doi.org/10.1074/jbc.270.3.136

    Article  CAS  PubMed  Google Scholar 

  112. Takahashi, H., Honma, M., Ishida-Yamamoto, A., Namikawa, K., Kiyama, H., & Iizuka, H. (2001). Expression of human cystatin A by keratinocytes is positively regulated via the Ras/MEKK1/MKK7/JNK signal transduction pathway but negatively regulated via the Ras/Raf-1/MEK1/ERK pathway. Journal of Biological Chemistry, 276, 36632–36638.

    Article  CAS  PubMed  Google Scholar 

  113. Cho, H. R., Hong, S. B., Kim, Y. I., Lee, J. W., & Kim, N. I. (2004). Differential expression of TGF-beta isoforms during differentiation of HaCaT human keratinocyte cells: Implication for the separate role in epidermal differentiation. Journal of Korean Medical Science, 19, 853–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Borowiec, A. S., Delcourt, P., Dewailly, E., & Bidaux, G. (2013). Optimal differentiation of in vitro keratinocytes requires multifactorial external control. PLoS ONE, 8, e77507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Büchau, F., Vielmuth, F., Waschke, J., & Magin, T. M. (2022). Bidirectional regulation of desmosome hyperadhesion by keratin isotypes and desmosomal components. Cellular and Molecular Life Sciences, 79, 1–17.

    Article  Google Scholar 

  116. Calenic, B., Greabu, M., Caruntu, C., Tanase, C., & Battino, M. (2000). (2015) Oral keratinocyte stem/progenitor cells: Specific markers, molecular signaling pathways and potential uses. Periodontology, 69, 68–82.

    Article  Google Scholar 

  117. Cherng, J.-H., Chou, S.-C., Chen, C.-L., Wang, Y.-W., Chang, S.-J., Fan, G.-Y., Leung, F.-S., & Meng, E. (2021). Bacterial cellulose as a potential bio-scaffold for effective re-epithelialization therapy. Pharmaceutics, 13, 1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Descargues, P., Sil, A. K., Sano, Y., Korchynskyi, O., Han, G., Owens, P., Wang, X. J., & Karin, M. (2008). IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2487–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eckert, R. L., Efimova, T., Dashti, S. R., Balasubramanian, S., Deucher, A., Crish, J. F., Sturniolo, M., & Bone, F. (2002). Keratinocyte Survival, Differentiation, and Death: Many Roads Lead to Mitogen-Activated Protein Kinase. Journal of Investigative Dermatology Symposium Proceedings, 7, 36–40.

    Article  CAS  PubMed  Google Scholar 

  120. Esch, S., Gottesmann, M., & Hensel, A. (2019). γ-Propoxy-Sulfo-Lichenan Induces In Vitro Cell Differentiation of Human Keratinocytes. Molecules (Basel, Switzerland), 24(3), 574. https://doi.org/10.3390/molecules24030574

    Article  CAS  PubMed  Google Scholar 

  121. Fessing, M. Y., Atoyan, R., Shander, B., Mardaryev, A. N., Botchkarev, V. V., Jr., Poterlowicz, K., Peng, Y., Efimova, T., & Botchkarev, V. A. (2010). BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. The Journal of Investigative Dermatology, 130, 398–404.

    Article  CAS  PubMed  Google Scholar 

  122. Chevalier, F. P., Rorteau, J., Ferraro, S., Martin, L. S., Gonzalez-Torres, A., Berthier, A., El Kholti, N., & Lamartine, J. (2022). MiR-30a-5p alters epidermal terminal differentiation during aging by regulating BNIP3L/NIX-dependent Mitophagy. Cells, 11(5), 836. https://doi.org/10.3390/cells11050836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gugger, J. A. (2022). Investigating the molecular mechanisms underlying skin fragility in tp63-linked ectodermal dysplasias [Dissertation, Master’s of Science in Biomedical Sciences]. East Carolina University.

  124. Hsiao, P. F., Huang, Y. T., Lu, P. H., Chiu, L. Y., Weng, T. H., Hung, C. F., & Wu, N. L. (2022). Thioredoxin-interacting protein regulates keratinocyte differentiation: Implication of its role in psoriasis. The FASEB Journal, 36, e22313.

    Article  CAS  PubMed  Google Scholar 

  125. Kosumi, H., Watanabe, M., Shinkuma, S., Nohara, T., Fujimura, Y., Tsukiyama, T., Donati, G., Iwata, H., Nakamura, H., & Ujiie, H. (2022). Wnt/β-Catenin Signaling Stabilizes Hemidesmosomes in Keratinocytes. Journal of Investigative Dermatology, 142(1576–1586), e1572.

    Google Scholar 

  126. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Systems, 1, 417–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lowenberg, S., Antiguas, A., & Dunnwald, M. (2022). Investigating the Effects of IRF6 on Focal Adhesions in Keratinocytes. The FASEB Journal, 36, S1. https://doi.org/10.1096/fasebj.2022.36.S1.R5370

    Article  Google Scholar 

  128. McMullan, R., Lax, S., Robertson, V. H., Radford, D. J., Broad, S., Watt, F. M., Rowles, A., Croft, D. R., Olson, M. F., & Hotchin, N. A. (2003). Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway. Current Biology, 13, 2185–2189.

    Article  CAS  PubMed  Google Scholar 

  129. Moltrasio, C., Romagnuolo, M., & Marzano, A. V. (2022). Epigenetic Mechanisms of Epidermal Differentiation. International Journal of Molecular Sciences, 23, 4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Prudnikova, T. Y., Rawat, S. J., & Chernoff, J. (2015). Molecular pathways: Targeting the kinase effectors of RHO-family GTPases. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 21, 24–29.

    Article  CAS  PubMed  Google Scholar 

  131. Rangarajan, A., Talora, C., Okuyama, R., Nicolas, M., Mammucari, C., Oh, H., Aster, J. C., Krishna, S., Metzger, D., Chambon, P., Miele, L., Aguet, M., Radtke, F., & Dotto, G. P. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. The EMBO Journal, 20, 3427–3436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Robertson, E. D., Weir, L., Romanowska, M., Leigh, I. M., & Panteleyev, A. A. (2012). ARNT controls the expression of epidermal differentiation genes through HDAC- and EGFR-dependent pathways. Journal of Cell Science, 125, 3320–3332.

    CAS  PubMed  Google Scholar 

  133. Romashin, D. D., Rusanov, A. L., Kozhin, P. M., Karagyaur, M. N., Tikhonova, O. V., Zgoda, V. G., & Luzgina, N. G. (2022). Impact of p53 knockdown on protein dataset of HaCaT cells. Data in Brief, 42, 108274. https://doi.org/10.1016/j.dib.2022.108274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sayama, K., Hanakawa, Y., Shirakata, Y., Yamasaki, K., Sawada, Y., Sun, L., Yamanishi, K., Ichijo, H., & Hashimoto, K. (2001). Apoptosis signal-regulating kinase 1 (ASK1) is an intracellular inducer of keratinocyte differentiation. Journal of Biological Chemistry, 276, 999–1004.

    Article  CAS  PubMed  Google Scholar 

  135. Todorović, V., McDonald, H. A., Hoover, P., Wetter, J. B., Marinopoulos, A. E., Woody, C. L., Miller, L., Finkielsztein, A., Dunstan, R. W., & Paller, A. S. (2022). Cytokine induced 3-D organotypic psoriasis skin model demonstrates distinct roles for NF-κB and JAK pathways in disease pathophysiology. Experimental Dermatology, 31(7), 1036–1047. https://doi.org/10.1111/exd.14551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Usuki, S., Tamura, N., Tamura, T., Yuyama, K., Mikami, D., Mukai, K., & Igarashi, Y. (2022). Konjac Ceramide (kCer)-Mediated Signal Transduction of the Sema3A Pathway Promotes HaCaT Keratinocyte Differentiation. Biology, 11, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Watt, F. M. (2002). Role of integrins in regulating epidermal adhesion, growth and differentiation. The EMBO Journal, 21, 3919–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu, J., Wei, Q., & He, Z. (2020). Insight Into the Function of RIPK4 in Keratinocyte Differentiation and Carcinogenesis. Frontiers in Oncology, 10, 1562.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yapindi, L. (2022). Activation of p53-Regulated Pro-survival Signals and Hypoxia-Independent Mitochondrial Targeting of TIGAR by E6 Oncoproteins of High-Risk HPVs. Virology., 585, 1–20. https://doi.org/10.1016/j.virol.2023.05.004

    Article  CAS  Google Scholar 

  140. Zhang, L., Piipponen, M., & Landén, N. (2021). Identification of a novel skin-specific long non-coding RNA regulating keratinocyte differentiation. In Journal of Investigative Dermatology, 141, S209–S209. https://doi.org/10.1016/j.jid.2021.08.353. ELSEVIER SCIENCE INC STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA.

    Article  Google Scholar 

  141. Zingkou, E., Pampalakis, G., & Sotiropoulou, G. (2021). Keratinocyte differentiation and proteolytic pathways in skin (patho) physiology. International Journal of Developmental Biology, 66, 269–275.

    Article  Google Scholar 

  142. Stabell, A. R., Lee, G. E., Jia, Y., Wong, K. N., Wang, S., Ling, J., Nguyen, S. D., Sen, G. L., Nie, Q., & Atwood, S. X. (2023). Single-cell transcriptomics of human-skin-equivalent organoids. Cell Reports, 42, 112511.

    Article  CAS  PubMed  Google Scholar 

  143. Lee, S. H., Jeong, S. K., & Ahn, S. K. (2006). An Update of the Defensive Barrier Function of Skin. Yonsei Medical Journal, 47, 293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bollinger Bollag, W., & Bollag, R. J. (2001). 1,25-Dihydroxyvitamin D(3), phospholipase D and protein kinase C in keratinocyte differentiation. Molecular and Cellular Endocrinology, 177, 173–182.

    Article  CAS  PubMed  Google Scholar 

  145. Bikle, D. D., Oda, Y., & Xie, Z. (2004). Calcium and 1,25(OH)2D: Interacting drivers of epidermal differentiation. Journal of Steroid Biochemistry and Molecular Biology, 89–90, 355–360.

    Article  PubMed  Google Scholar 

  146. Marinari, B., Moretti, F., Botti, E., Giustizieri, M. L., Descargues, P., Giunta, A., Stolfi, C., Ballaro, C., Papoutsaki, M., Alemà, S., Monteleone, G., Chimenti, S., Karin, M., & Costanzo, A. (2008). The tumor suppressor activity of IKKalpha in stratified epithelia is exerted in part via the TGF-beta antiproliferative pathway. Proceedings of the National Academy of Sciences U S A, 105, 17091–17096.

    Article  CAS  Google Scholar 

  147. Takahashi, H., Asano, K., Kinouchi, M., Ishida-Yamamoto, A., Wuepper, K. D., & Iizuka, H. (1998). Structure and transcriptional regulation of the human cystatin A gene. The 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element-2 site (-272 to -278) on cystatin A gene is critical for TPA-dependent regulation. Journal of Biological Chemistry, 273, 17375–17380.

    Article  CAS  PubMed  Google Scholar 

  148. Freedberg, I. M., Tomic-Canic, M., Komine, M., & Blumenberg, M. (2001). Keratins and the keratinocyte activation cycle. The Journal of Investigative Dermatology, 116, 633–640.

    Article  CAS  PubMed  Google Scholar 

  149. Lin, S. J., Lerch, T. F., Cook, R. W., Jardetzky, T. S., & Woodruff, T. K. (2006). The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction, 132, 179–190.

    Article  CAS  PubMed  Google Scholar 

  150. Robbesyn, F., Salvayre, R., & Negre-Salvayre, A. (2004). Dual role of oxidized LDL on the NF-kappaB signaling pathway. Free Radical Research, 38, 541–551.

    Article  CAS  PubMed  Google Scholar 

  151. Schneider, M. R., Werner, S., Paus, R., & Wolf, E. (2008). Beyond wavy hairs: The epidermal growth factor receptor and its ligands in skin biology and pathology. American Journal of Pathology, 173, 14–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Moriyama, M., Durham, A.-D., Moriyama, H., Hasegawa, K., Nishikawa, S.-I., Radtke, F., & Osawa, M. (2008). Multiple Roles of Notch Signaling in the Regulation of Epidermal Development. Developmental Cell, 14, 594–604.

    Article  CAS  PubMed  Google Scholar 

  153. Salat, D., Liefke, R., Wiedenmann, J., Borggrefe, T., & Oswald, F. (2008). ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Molecular and Cellular Biology, 28, 3502–3512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. El-Serafi, A. T., El-Serafi, I., Steinvall, I., Sjöberg, F., & Elmasry, M. (2022). A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. International Journal of Molecular Sciences, 23(14), 7934. https://doi.org/10.3390/ijms23147934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ter Horst, B., Chouhan, G., Moiemen, N. S., & Grover, L. M. (2018). Advances in keratinocyte delivery in burn wound care. Advanced Drug Delivery Reviews, 123, 18–32.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sümer, C., Boz Er, A. B., & Dinçer, T. (2019). Keratin 14 is a novel interaction partner of keratinocyte differentiation regulator: Receptor-interacting protein kinase 4. Turkish Journal of Biology, 43, 225–234.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bilousova, G., Chen, J., & Roop, D. R. (2011). Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. The Journal of Investigative Dermatology, 131, 857–864.

    Article  CAS  PubMed  Google Scholar 

  158. Yamanaka, S. (2020). Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell, 27, 523–531.

    Article  CAS  PubMed  Google Scholar 

  159. Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., & Drela, K. (2019). Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells International, 2019, 9628536.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Escámez, M. J., García, M., Larcher, F., Meana, A., Muñoz, E., Jorcano, J. L., & Del Río, M. (2004). An in vivo model of wound healing in genetically modified skin-humanized mice. The Journal of Investigative Dermatology, 123, 1182–1191.

    Article  PubMed  Google Scholar 

  161. Zhao, B., Liu, J. Q., Zheng, Z., Zhang, J., Wang, S. Y., Han, S. C., Zhou, Q., Guan, H., Li, C., Su, L. L., & Hu, D. H. (2016). Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways. Cell and Tissue Research, 365, 85–99.

    Article  CAS  PubMed  Google Scholar 

  162. Yan, Y., Jiang, J., Zhang, M., Chen, Y., Wang, X., Huang, M., & Zhang, L. (2019). Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice. Experimental Cell Research, 385, 111627.

    Article  CAS  PubMed  Google Scholar 

  163. Trappmann, B., Gautrot, J. E., Connelly, J. T., Strange, D. G., Li, Y., Oyen, M. L., Cohen Stuart, M. A., Boehm, H., Li, B., Vogel, V., Spatz, J. P., Watt, F. M., & Huck, W. T. (2012). Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 11, 642–649.

    Article  CAS  PubMed  Google Scholar 

  164. Mammoto, A., Mammoto, T., & Ingber, D. E. (2012). Mechanosensitive mechanisms in transcriptional regulation. Journal of Cell Science, 125, 3061–3073.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Weaver, C. L., & Cui, X. T. (2015). Directed Neural Stem Cell Differentiation with a Functionalized Graphene Oxide Nanocomposite. Advanmce Healthcare Materials, 4, 1408–1416.

    Article  CAS  Google Scholar 

  166. Izadyari Aghmiuni, A., Heidari Keshel, S., Sefat, F., & Akbarzadeh Khiyavi, A. (2020). Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. International Journal of Biological Macromolecules, 142, 668–679.

    Article  CAS  PubMed  Google Scholar 

  167. Arribas-López, E., Zand, N., Ojo, O., Snowden, M. J., & Kochhar, T. (2022). A systematic review of the effect of Centella asiatica on wound healing. International Journal of Environmental Research and Public Health, 19, 3266.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Asgharikhatooni, A., Bani, S., Hasanpoor, S., Mohammad Alizade, S., & Javadzadeh, Y. (2015). The effect of equisetum arvense (horse tail) ointment on wound healing and pain intensity after episiotomy: A randomized placebo-controlled trial. Iranian Red Crescent Medical Journal, 17, e25637.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rahman, M. T., Hasan, M., Hossain, M. T., Islam, M. S., Rahman, M. A., Alam, M. R., & Juyena, N. S. (2020). Differential efficacies of marigold leaves and turmeric paste on the healing of the incised wound in sheep. Journal of Advanced Veterinary and Animal Research, 7, 750.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Merecz-Sadowska, A., Sitarek, P., Zajdel, K., Kucharska, E., Kowalczyk, T., & Zajdel, R. (2021). The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci, 22(22), 12488. https://doi.org/10.3390/ijms222212488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hassanzadeh, H., Matin, M. M., Naderi-Meshkin, H., Bidkhori, H. R., Mirahmadi, M., Raeesolmohaddeseen, M., Sanjar-Moussavi, N., & Bahrami, A. R. (2018). Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications. Cell and Tissue Banking, 19, 531–547.

    Article  CAS  PubMed  Google Scholar 

  172. Kerstan, A., Niebergall-Roth, E., Esterlechner, J., Schröder, H. M., Gasser, M., Waaga-Gasser, A. M., Goebeler, M., Rak, K., Schrüfer, P., Endres, S., Hagenbusch, P., Kraft, K., Dieter, K., Ballikaya, S., Stemler, N., Sadeghi, S., Tappenbeck, N., Murphy, G. F., Orgill, D. P., … Kluth, M. A. (2021). Ex vivo-expanded highly pure ABCB5(+) mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: Process validation and first in-human data. Cytotherapy, 23, 165–175.

    Article  CAS  PubMed  Google Scholar 

  173. Kirana, S., Stratmann, B., Prante, C., Prohaska, W., Koerperich, H., Lammers, D., Gastens, M. H., Quast, T., Negrean, M., Stirban, O. A., Nandrean, S. G., Götting, C., Minartz, P., Kleesiek, K., & Tschoepe, D. (2012). Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. International Journal of Clinical Practice, 66, 384–393.

    Article  CAS  PubMed  Google Scholar 

  174. Lu, D., Jiang, Y., Deng, W., Zhang, Y., Liang, Z., Wu, Q., Jiang, X., Zhang, L., Gao, F., Cao, Y., Chen, B., & Xue, Y. (2019). Long-Term Outcomes of BMMSC Compared with BMMNC for Treatment of Critical Limb Ischemia and Foot Ulcer in Patients with Diabetes. Cell Transplantation, 28, 645–652.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ruiz-Salmeron, R., de la Cuesta-Diaz, A., Constantino-Bermejo, M., Pérez-Camacho, I., Marcos-Sánchez, F., Hmadcha, A., & Soria, B. (2011). Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplantation, 20, 1629–1639.

    Article  PubMed  Google Scholar 

  176. Procházka, V., Gumulec, J., Jalůvka, F., Salounová, D., Jonszta, T., Czerný, D., Krajča, J., Urbanec, R., Klement, P., Martinek, J., & Klement, G. L. (2010). Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplantation, 19, 1413–1424.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to report that this article is a part of the Ph.D. thesis and is supported by the Tabriz University of Medical Sciences (Pharmacy faculty- Medicinal Chemistry Department) with grant number 58491.

Funding

This work was supported by Tabriz University of Medical Sciences, grant number: 58491.

Author information

Authors and Affiliations

Authors

Contributions

R H: Conceptualization, Validation, Methodology, Formal analysis, Writing – original draft. S D, S S, P K: review &editing. EA: Conceptualization, Writing- reviewing and editing the final draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Soodabeh Davaran or Effat Alizadeh.

Ethics declarations

Ethic Approval and Consent to Participate

Ethics code: IR.TBZMED.VCR.REC.1397.123.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazrati, R., Davaran, S., Keyhanvar, P. et al. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev and Rep 20, 362–393 (2024). https://doi.org/10.1007/s12015-023-10636-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10636-9

Keywords

Navigation