Skip to main content
Log in

Long-term culture of keratinocyte-like cells derived from mouse embryonic stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A number of epithelial lineages have been derived from mouse embryonic stem cells during the past decades, but the long lasting culture has never been reported. In this paper, we report when mouse embryonic stem cells were dispersed into small clumps containing approximately 50 to 100 cells and grown on mitotically inactivated mouse embryonic fibroblast feeder layers for up to 10 d to form epithelial-like colonies. Through subsequent cultivation without mouse embryonic fibroblast feeder layers, a serially subcultured keratinocyte-like cell lineage was established under these conditions. Pan cytokeratin, cytokeratin 14, and cytokeratin 18 were observed in these proliferating cells using immunocytochemistry and flow cytometry. E-cadherin, Involucrin, and keratin mRNAs were determined by a semi-quantitative and a quantitative real time reverse transcription-polymerase chain reaction (RT-PCR). These results confirmed the establishment of a keratinocyte-like cell lineage derived from mouse embryonic stem cells. In this paper also, we describe a method by which mouse embryonic stem cells can be differentiated into cells with some characteristics of epidermal keratinocytes and kept these cells in long-term culture. Potential applications of this method are the in vitro differentiation of cells of interest from embryonic stem (ES) cells of mice during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments or better understanding the mechanisms for epithelial differentiation of embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Ali, N. N.; Edgar, A. J.; Samadikuchaksaraei, A. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng 8: 541–550; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bagutti C.; Hutter C.; Chiquet E. R. Dermal fibroblast-derived growth factors restore the ability of b1 integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev. Biol. 231: 321–333; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Behr R.; Heneweer C.; Viebahn C. Epithelial–mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation. Stem Cells 23: 805–816; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Berrill A.; Tan H. L.; Wuang S. C. Assessment of stem cell markers during long-term culture of mouse embryonic stem cells. Cytotechnology. 44: 77–91; 2004.

    Article  CAS  Google Scholar 

  • Brustle O.; Jones K. N.; Learish R. D. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285: 754–756; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Byrne C.; Tainsky M.; Fuchs E. Programming gene expression in developing epidermis. Development 120: 2369–2383; 1994.

    Google Scholar 

  • Chiba S.; Ikeda R.; Kurokawa M. S. Anatomical and functional recovery by embryonic stem (ES) cell-derived neural tissue of a mouse model of brain damage. J. Neurol. Sci. 219: 107–117; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chiba S.; Iwasaki Y.; Sekino H.; Suzuki N. Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant. 2: 457–468; 2003.

    Google Scholar 

  • Chinzei R.; Tanaka Y.; Shimizu S. K. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36: 22–29; 2002.

    Article  PubMed  Google Scholar 

  • Coraux C.; Hilmi C.; Rouleau M.; Spadafora A.; Hinnrasky J.; Ortonne J. P.; Dani C.; Aberdam D. Reconstituted skin from murine embryonic stem cells. Curr. Biol. 13: 849–853; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Coraux C.; Nawrocki R. B.; Hinnrasky J. Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell Mol. Biol. 32: 87–92; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Cristina, T. Z.; Beatriz, C.; Verónica, S.; Ignacio, V.; Óscar, Á. G.; Delio, T. Survival mechanisms in a physiological oxidative stress model. FASEB J. 19: 2066–2068; 2005.

    Google Scholar 

  • Dani, C.; Smith, A. G.; Dessolin, S. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110: 1279–1285; 1997.

    PubMed  CAS  Google Scholar 

  • Evan M. J.; Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E. Epidermal differentiation: the bare essentials. J. Cell Biol. 111: 2807–2814; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gerrard, A. J.; Hudson, D. L.; Brownlee, G. G.; Watt, F. M. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat. Genet. 3: 180–183; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Green, H.; Easley, K.; Iuchi, S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl. Acad. Sci. U. S. A. 100: 15625–15630; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Haase, I.; Knaup, R.; Wartenberg, M.; Sauer, H.; Hescheler, J.; Mahrle, G. In vitro differentiation of murine embryonic stem cells into keratinocyte-like cells. Eur J Cell Biol.; 2007, DOI 10.1016/j.ejcb.2007.07.001.

  • Hager, B.; Bickenbach, J. R.; Fleckman, P. Long-term culture of murine epidermal keratinocytes. J. Invest. Dermatol. 112: 971–976; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson, W. E.; Jenkinson, E. J.; Anderson, G. Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J. Exp. Med. 198: 325–332; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H.; Mizuseki, K.; Nishikawa, S. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H.; Suemori, H.; Mizuseki, K. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. U. S. A. 99: 1580–1585; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Klug, M. G.; Soonpaa, M. H.; Koh, G. Y.; Field, L. J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98: 216–224; 1996.

    Article  Google Scholar 

  • Kramer, J.; Hegert, C.; Hargus, G. Chondrocytes derived from mouse embryonic stem cells. Cytotechnology 41: 177–187; 2003.

    Article  CAS  Google Scholar 

  • Lavappa K. S. Trypsin-Giemsa banding procedure for chromosome preparations from cultured mammalian cells. Methods in Cell Sci. 4: 761–764; 2005.

    Google Scholar 

  • Li, X. Y.; Jia, Q.; Di, K. Q. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation. Cell Tissue Res. 8: 607–614; 2007.

    Article  CAS  Google Scholar 

  • Lim, J. W.; Bodnar, A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187–1203; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lumelsky, N.; Blondel, O.; Laeng, P. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 1389–1394; 2001.

    Article  Google Scholar 

  • Maitra, A.; Arking, D. E.; Shivapurkar, N. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37: 1099–1103; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78: 7631–7638; 1981.

    Google Scholar 

  • McDonald, J. W.; Liu, X. Z.; Qu, Y. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5: 1410–1412; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, A.; Gertsenstein, M.; Vintersten, K. Manipulating the mouse embryo: a laboratory manual. London Cold Spring Harbor Laboratory Press, New York2003.

    Google Scholar 

  • Nakamura, Y.; Grumont, R. J.; Gerondakis, S. NF-kB1 can inhibit v-Abl-induced lymphoid transformation by functioning as a negative regulator of cyclin D1 expression. Mol. Cell Biol. 22: 5563–5574; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T.; Kodama, H.; Honjo, T. In vitro development of primitive and definitive erythrocytes from different precursors. Science 272: 722–724; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Peura, T. T.; Bosman, A.; Stojanov, T. Derivation of human embryonic stem cell lines. Theriogenology 67: 32–42; 2007.

    Article  PubMed  Google Scholar 

  • Reubinoff, B. E.; Itsykson, P.; Turetsky, T. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19: 1134–1140; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, E. J. Embryo derived stem cell lines. In: Teratocarcinomas and embryonic stem cells: a practial approach. Oxford, IRL Press, London, 1987: pp 71–112

  • Rodewald, H. R.; Paul, S.; Haller, C.; Bluethmann, H.; Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414: 763–768; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y. T.; Huang, Y. Z.; Tang, F. Mouse embryonic stem cell-derived feeder cells support the growth of their own mouse embryonic stem cells. Cell Bio. Int. 30: 1041–1047; 2006.

    Article  CAS  Google Scholar 

  • Shiro, I.; Sally, D.; Karen, E. Immortalized keratinocyte lines derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 100: 15625–15630; 2006.

    Google Scholar 

  • Stojkovic, P.; Lako, M.; Stewart, R. An autogenetic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23: 306–314; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A.; Itskovitz, E. J.; Shapiro, S. S. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Toumadje, A.; Kusumoto, K. I.; Parton, A. Pluripotent differentiation in vitro of murine ES-D3 embryonic stem cells. In Vitro Cell Dev. Biol. 39: 449–453; 2003.

    Article  Google Scholar 

  • Wakayama, S.; Hikichi, T.; Suetsugu, R. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 25: 986–993; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C. H.; Jiang, J. J.; Virginie, S. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 22: 972–980; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.; Hayward, S.; Cao, M.; Thayer, K.; Cunha, G. Cell differentiation lineage in the prostate. Differentiation 68: 270–279; 2001.

    Article  Google Scholar 

  • Yoo, S. J.; Yoon, B. S.; Kim, J. M. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp. Mol. Med. 37: 399–407; 2005.

    PubMed  CAS  Google Scholar 

  • Yoshino, K.; Tseng, S. C.; Pflugfelder, S. C. Substrate modulation of morphology, growth, and tear protein production by cultured human lachrymal gland epithelial cells. Exp. Cell Res. 220: 138–151; 1995.

    Article  Google Scholar 

  • Zhang, S. C.; Wernig, M.; Duncan, I. D.; Brustle, O.; Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19: 1129–1133; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ben Hause and Prof. Ou-Yang Jing-Ping for their critical appraisal of the manuscript. This research was funded by The National High Technology Research and Development Program of China(863 program)(2007AA100505), Tackle Key Projects in Science and Technology of Hubei Province, China (Grant No. 2003AA303B06) and National Natural Science Foundation of China (30371028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Wen Jiang.

Additional information

Editor: J. Denry Sato

Hai-Jun Huang and Qi-Shuang Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HJ., Gao, QS., Tao, BF. et al. Long-term culture of keratinocyte-like cells derived from mouse embryonic stem cells. In Vitro Cell.Dev.Biol.-Animal 44, 193–203 (2008). https://doi.org/10.1007/s11626-008-9092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9092-2

Keywords

Navigation